5. Conclusion
The results of the present work demonstrate the feasibility of an objective classification of different structures in steel on the basis of morphological parameters by data mining methods. The process in Rapid Miner with the SVM as classifier showed good classification results for the three classes martensite, pearlite and bainite. We were able to show how to develop a process for the classification of microstructures. Furthermore, data preprocessing and feature selection could at the same time improve the classification results in order to make the model less complex and increase the generalization. Additionally, we found significant differences in the results between shuffled data split and sample-wise data split. The integration of substructure parameters in the classification process has shown high accuracy using fewer parameters. Comparable results for the morphological microstructural parameter were only possible with reproducible etching and segmentation methods. In order to further improve the accuracy, characteristic parameters of the second-phase objects and the substructure could be combined and more data should be produced in order to get statistically sufficient results and improve generalization.