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A B S T R A C T

The mechanical properties of modern multi-phase materials significantly depend on the distribution, the shape
and the size of the microstructural constituents. Thus, quantification and classification of the microstructure are
decisive in identifying the underlying structure-property relationship of a specific material. Due to the com-
plexity of the microstructure in modern materials, a reliable classification of microstructural constituents re-
mains one of the biggest challenges in metallography.

The present study demonstrates how data mining methods can be used to determine varying steel structures
of two-phase steels by evaluating their morphological parameters.

A data mining process was developed by using a support vector machine as classifier to build a model that is
able to distinguish between different microstructures of the two-phase steels. The impact of preprocessing and
feature selection methods on the classification result was tested.

1. Introduction

The microstructure of advanced steels is usually controlled by so-
phisticated thermo-mechanical processing or heat treatments post hot
rolling [1]. Depending on chemical composition and process control,
the microstructure of such steels may consist of a range of different
phases. If the microstructure consists of more than one phase, the
properties of the material strongly depend on the type and distribution
of the respective phases [2]. Therefore, it is crucial to determine the
type and amount of the different phases in order to assess the under-
lying structure-property relationship. Traditionally, microstructures of
steels are characterized by using standard metallographic procedures
based on chemical etching and light optical microscopy (LOM) and they
are classified by comparing the microscopy images with reference
series.

Especially for steel and its complex microstructures the comparison
with reference series is strongly dependent on the expert’s subjective
opinion. Nonetheless, steel is still one of the most widely used materials
because of its excellent mechanical properties and the huge variety of
applications [3]. Therefore, there is significant interest in the de-
volvement of objective quantification techniques for steels.

In order to characterize steel, the microstructures can be etched for
example with a structure etching such as Nital [4] or color etching

techniques like Beraha‘s etchant [5]. Due to different contrasts obtained
by etching the ferritic matrix can be distinguished from a pearlitic,
bainitic or martensitic second phase. However, these etchings are lim-
ited to empirical approaches and quickly reach their limits, especially
for the discrimination of different phase constituents in steels that ex-
hibit more than two phases. Furthermore, the microstructures of com-
plex multi-phase steels are usually too fine to be resolved by light op-
tical microscopy. A proper characterization requires modern
metallographic techniques such as high resolution scanning electron
microscopy (SEM) or electron back-scatter diffraction (EBSD) [6,7].
Therefore, any approach aiming at identifying the phase constituents of
multi-phase steels has to rely on morphological or crystallographic
parameters accessible by these techniques [8–13].

Recently, several studies have focused on EBSD for the micro-
structural characterization of steels, as this technique can provide direct
information on the phase composition [6,7,8,14]. For example, in Ref.
[14] a multitude of steel grades from different manufactures has been
studied and an EBSD-based classification model was proposed. It was
shown that the kernel average misorientation (KAM) deduced from
EBSD measurements can be used to distinguish between ferrite, bainitic
ferrite and martensite. Although those EBSD-based approaches have
proven to work out for some steels, the phase separation by means of
EBSD is very subjective as it strongly depends on a proper selection of
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the preparation, measurement and evaluation parameters [14].
A completely new approach for the classification of microstructures

using data mining methods was presented by Velichko et al. [15]. Data
mining is the process of knowledge discovery in datasets [16]. It sum-
marizes all analysis procedures required in order to identify interesting
trends and patterns within data and includes data preparation and data
modeling. Various models can be constructed, depending on the re-
search goal. In order to properly interpret the models, standard eva-
luation and statistical procedures are needed [16]. In their study, Ve-
lichko and coworkers have used data mining methods to classify the
different graphite morphologies in cast iron by using a support vector
machine (SVM) as a classifier. A SVM is a binary classification method
that takes labeled data from different classes as input and outputs a
model for classifying new unlabeled/labeled data into different classes.
Basically, Velichko et al. have deduced morphological parameters from
optical micrographs of several reference samples and analyzed the large
quantity of data with a data mining tool. This enabled them to find
trends, clusters or anomalies as well as relations between the mor-
phological parameters in the data which were characteristic for the
graphite morphologies and could be used to derive a classification
model. This model was tested on independent samples and showed a
classification accuracy of about 95% for most of the different graphite
morphologies. Unlike classic metallographic procedures, the data
mining approach has the advantage of not having a scope for a sub-
jective interpretation of the microstructure. A similar data mining-
based approach was used by Liu et al. for the classification of complex
steel structures [17]. In their study, workflows were developed using a
nearest neighbors (kNN) classifier and pixel-based parameters to clas-
sify steels using light microscopy images of single-phase pearlitic
samples and samples with a mixed microstructure. For steel with two
classes they found good agreement in terms of the phase fraction in
comparison to manual classification results. For pearlite the classifica-
tion workflow could not be used, so in a first approach artificially
created structures were tested, which reached 93.8% accuracy. DeCost
and Holm showed that a classification of 7 different materials (ductile
cast iron, gray cast iron, malleable cast iron, annealing twins, brass
hypereutectoid steel and superalloy) with visual features can be per-
formed by using one SVM model for each image class. Their classifier
system reached a cross-validation accuracy of 83% [18].

Besides data mining, deep learning methods can be applied for the
classification of microstructures. For example, Chowdhury et al.
showed in a case study that pre-trained neuronal networks could be
used for feature extraction from images of alloys of varying Sn–Ag–Cu
compositions showing dendritic structures. With these features they
reached maximum classification accuracies of 97% by using linear SVM
as a classifier in order to distinguish between microstructural images in
terms of the presence of dendrites [19]. Although deep learning
methods have recently received considerable interest and might be used
for microstructure classification [20,21], with convolutional neural
networks (CNNs) the features of the classification can no longer be
accessed and thus the material-based background is no longer given.

The aim of this work is to prove that a data mining process in
combination with traditional microstructural parameters can be used as
a means to objectively classify the microstructure of two- phase steels
with a ferritic matrix using the SVM as a classifier. The structure of the
data mining process is described and different preprocessing and data

split options are discussed. In contrast to the graphite morphologies in
cast iron, typical microstructures of steels are more complex because of
the substructure. Therefore, the classification is based on morphological
parameters extracted from light optical microscopy and electron mi-
croscopy images. In order to reach a high degree of generalization a
large amount of data is used to train the model. In a first step, a da-
tabase is generated that contains a considerable variety of structures
and objects representing the different classes of microstructures, which
are then used to train the model.

2. Experimental

The principal approach of the data mining-based classification de-
veloped in this study is illustrated in Fig. 1. The different steps of
sample preparation, etching and microscopy have to be performed to
get an image of the microstructure. Next the image has to be converted
to a binary image and the parameters to build the data mining model
have to be measured. The data were preprocessed and the number of
parameters was reduced by feature selection methods. With the final
model microstructures can be classified by their parameters.

2.1. Material

In order to obtain a representative amount of data for the training
and testing of the classification model a large number of samples with
well-defined microstructures is required. For this purpose, samples from
thermo-mechanically rolled steel plates with a carbon content of ap-
proximately 0.06 wt-% and two-phase microstructures consisting of a
ferritic matrix and either a pearlitic, martensitic or bainitic second
phase were used. In total, 2586 s phase grains – hereafter called objects
– with a martensitic, 564 with a pearlitic and 1326 objects with a
bainitic second phase were investigated on the basis of different sam-
ples.

2.2. Sample preparation

For the microstructural characterization, cross-sectional samples
were taken from the as-received material with the plane of view parallel
to the rolling direction. The specimen were ground with 400–2500 grit
SiC abrasive paper and then polished successively using 9, 6 and 3 µm
diamond suspension. Subsequently, a 120 s OP-S polish was used to
obtain the final surface finish.

2.3. Etching

The samples were etched with a modified Beraha etching solution
consisting of 3 g of potassium metabisulphite and 100ml of water to
contrast the second phase in the ferrite matrix. The etching was applied
for an etching time of 35–50 s depending on the type of the second
phase. The relatively short exposure time in combination with the
Beraha etching had the advantage that no structural etching appeared
on the matrix while the second phase objects were nicely visualized and
appeared dark in the light microscope [22]. Furthermore, the sub-
structure of the second phase was also accessible at higher magnifica-
tions in the SEM, which was crucial in order to distinguish the different
types of second phase.

Fig. 1. Steps of the different methods used to get the
data for the data mining classification.
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2.4. Microscopy

To extract the morphological parameters describing the second
phase objects a DM6000M light microscope from Leica and a la-
serscanning microscope LEXT OSL4100 from Olympus were used. In
order to achieve highly detailed images of the microstructure and
gather a statistically significant number of objects, images were taken at
predefined positions of the samples over an area of 300 µm×350 µm at
a magnification of 1000× and stitched together. These areas on the
samples were marked with Vickers indents and additionally imaged by
a Zeiss Merlin scanning electron microscope to resolve the substructure
of the second phase. To cover the same area as in the light microscope,
24 images were taken with a magnification of 1000× and a store re-
solution of 4096× 3072 pixel. As for the light microscope images,
these images were stitched together using Microsoft Image Composite
Editor (ICE). For the imaging, an Everhart-Thornley detector was used
and the SEM was operated at an acceleration voltage of 5 kV, a probe
current of 300 pA and a working distance of 5mm.

2.5. Segmentation

Microscope images had to be converted to binary images using the
image analysis program AxioVision from Zeiss in order for the com-
puter to be able to process the data. The second phase objects were
separated from the matrix by threshold value segmentation, which was
carried out on the light microscopic images after standard filters such as
shading correction and denoising had been applied. Several filters like
dilatation were applied on the resulting binary images in order to delete
artifacts and errors. Afterwards, the binarized light microscope images
were overlaid with the corresponding SEM images using Adobe
Photoshop CS6 and the area containing the second phase objects was
cropped. The cropped SEM images were added to AxioVision and an-
other threshold value segmentation on the combined images was ap-
plied to binarize and capture the substructure of the second phase [23].

2.6. Parameter measurement

In a next step, a broad variety of morphological parameters de-
scribing the structure and the substructure of the second phase objects
were measured on the binary images [13] using AxioVision and A4i
from Aquinto AG Version 5.10 a., where most of the parameters were
already implemented. These traditional microstructural parameters are
used in different fields like material science, but also biology or medi-
cine for a quantitative analysis of microscopy images. In the case of
material microstructure characterization, they are very helpful in
quantitatively evaluating microstructures and their morphology [12].
Only two additional parameters had to be defined and calculated se-
parately. The first one represented the area density of the substructure
in a second phase object and the second one was the normalized gray
value ratio of each second phase object. The substructure density was a
measure of how much of the inner structure is contained in a single
object and includes information on the substructure. The microscopic
images itself also showed differences in the appearance of the second
phase due to their appearance after etching. For the gray value ratio,
the images were transformed into 8 bit grayscale images and the
minimum, maximum and average grayscale of each object were de-
termined and the new parameter was calculated. This parameter is thus
associated with the texture of the phase in the light microscopic image.
In total, 27 parameters were obtained for each object and are sum-
marized in Table 1. These parameters, which were measured for the
individual objects on each sample, were saved in an excel sheet and
taken as input for the data mining model [13,15,24].

2.7. Data preprocessing

Data preprocessing influences the outcome of machine learning al-
gorithms, especially if the feature values do not confirm to a common
range or variance [27]. To address this issue, the values were normal-
ized by a standardization method. This method transforms each of the
feature vectors so as to get a zero mean (µ) and unit standard deviation
(σ). Since for some of the parameters, feature visualization showed a
standard distribution while for others it showed a skewed distribution,
the differences in the data preprocessing before normalization were
investigated by comparing the original data set of 27 parameters (da-
taset 1) with a data set transformed from the skewed distribution to the
logarithm standard distribution (dataset 2).

2.8. Feature selection

Meaningful parameters for the model were selected by feature se-
lection techniques. Feature selection is a technique to reduce di-
mensionality by finding a subset of the original features set that re-
presents the dataset in the best way [28,29]. A dimensional reduction
helps to reduce irrelevant information which may otherwise distort the
model. Thus, the characteristic parameters that enable a distinction
between the classes have to be identified in order to reduce the di-
mensionality and to guarantee a generalization of the results. One of the
most common strategies for feature selection is a filter-based method
which is used for preprocessing and ranking feature importance, re-
gardless of the model selection.

As several morphological parameters deduced from the binarized
microscope images correlated with each other such as the diameter and
the perimeter of an object, which reduces the accuracy of the classifi-
cation, a filter was applied such that only independent parameters re-
mained. First, the number of parameters was reduced in order to find
correlated parameters. For that reason, a parameter correlation matrix
was built and all parameters with a correlation factor higher than 0.95
were removed. The remaining parameters were analyzed by different
weight and feature ranking methods that were implemented in the data
mining program Rapid Miner by Rapid-I GmbH [27,30]. The results of
the different methods were combined to determine the importance of
the parameters. After that a successive backward elimination starting
with 15 parameters was performed to find the number of parameters
with the highest performance. This data was used to compare the
performance of the models with 27 parameters to a model of lower
dimension.

2.9. Machine learning methods

In order to analyze the data extracted from the micrographs a data
mining model was developed. The model was trained with the mor-
phological parameters from the reference samples in order to identify
characteristic microstructural patterns and objectively classify the mi-
crostructure. The microstructures of the second phase of the tested
samples were categorized into three classes: pearlite, martensite and
bainite. A SVM was implemented in the process of Rapid Miner by
Rapid-I GmbH [27,30]. The SVM was chosen because this classifier can
be used for a multiclass classification. The Radial Basis Function Kernel
(RBF) was used because of the big amount of data and their nonlinear
dependency [31]. The parameters C and γ define the model and they
affect the quality of the classification by the SVM and describe the
shape of the separating hyper plane. These parameters were analyzed to
improve the generalization of the SVM model. C is a parameter that
allows trading off training errors and model complexity [32].
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Table 1
Traditional morphological parameters measured by two programs used in the data mining model [25,26].

Name Description

Diameter Diameter of a circle with an equal area.
Diameter filled Same as diameter, but adjusts the area of an equivalent circle to account for filled holes in an object
Ellipse major Length of the major axis of the ellipse with the same geometric moment of inertia as the region. The moment of inertia is related to the region

centre of gravity
Elipse minor Length of the minor axis of the ellipse with the same geometric moment of inertia as the region. The moment of inertia is related to the region

centre of gravity
Fiber length Length of a fiber-like region. In order to calculate the fiber length, a structure that is actually similar to a fiber is required
Feret maximum Two straight lines are positioned on opposite sides of the object, like a sliding caliper, at 32 angle positions. The corresponding distance is

measured for each angle position. The maximum value determined is the feret maximum
Feret minimum The feret minimum parameter is measured in the same way as the feret maximum. The minimum value determined is the feret minimum
Feret ratio/stretching D The ratio of feret minimum to feret maximum
Area Area of a region excluding any holes it may contain.
Area filled Area of a region including any holes it contains
Area convex Area of convex hull of a region. The current region is surrounded by a convex polyline. The filled area of the resulting region is then

measured
Stretching F The ratio of area filled to the area of a circle with a diameter of feret maximum
Axial ratio The ratio of ellipse minor to ellipse major.
Mittferet Mean of the feret diameter
Euler number Describes the topology of an object. It is calculated by the tangents of the object. An object without any holes is given the value 1
Shape factor Describes the form of a region on the basis of its circularity. A perfect circle is given the value 1
Diameter max. Inscribed circle The measurement of a circle, the diameter of which is expanded to its maximum, within the boundaries of the object
Radius Radius of a circle with an equal area.
Perimeter Perimeter of a region including the perimeter of holes it contains
Perimeter filled Perimeter of a region excluding any holes it contains. The perimeter of the filled area is then measured.
Perimeter convex Perimeter of convex hull of a region. The current region is surrounded by a convex polyline. The perimeter of the filled area of the resulting

region is then measured
Gray value ratio The ratio of the difference between the maximum gray value and the average gray value to the difference between the mean gray value and

the minimum gray value multiplied by the ratio of the difference between maximum and minimum divided by 255
Area convex/area filled The ratio of area convex to area filled
Perimeter convex/perimeter filled The ratio of perimeter convex to perimeter filled
Area to total area The ratio of area filled of an object to the sum of area filled of all objects in the image
Area density of substructure The ratio between the total area of the substructure particles deduced from the SEM images and the area of the corresponding object as

determined in the optical micrographs

Fig. 2. Overall process chain in Rapid Miner with the three different performances for testing a model to classify microstructures. The training process used 80% of the whole data set to
find the parameters C and γ in a grid search; with these parameters the final model is built. The final model is tested using the training data to get the training performance. The other part
of the data (20%) was used to test the model with independent data and to get the test performance. The layers for training and testing are connected and fully automated.
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2.9.1. Classification process
For the development of the classification process, the data was di-

vided into a training and a test dataset by using two different data
splitting methods. The data was shuffled and divided into training and
test data in a ratio of 80:20 and compared using the sample-wise data
split. Using the sample-wise data split, the data was divided into a test
and a training set, i.e. some of the samples were only used for training
and other samples only for testing. In that case, test and training data
were completely independent because of the different samples. Using
the shuffled data split, the whole variety of structure appearances in
one class of different samples can be maintained and leads to a higher
generalization of the model compared to a sample-wise data split. In
case of the sample-wise data split there was less variety because only
half of the samples were used to build the model. The test data was only
used in the end to test the final model. By using the training data the
best parameters for the SVM could be determined and the final model
was built. The process implemented for the training of the model using
the SVM as a classifier has two sub-level processes inside the Optimize
Parameter operator [24]. Subsequently, the training data had to be
imported from the Excel sheet into Rapid Miner and an operator was
used to normalize the data using the standardization method [16]. In
the next step, the best combination of the parameters C and γ from the
SVM had to be found in a grid search using the Optimize Parameter
operator. With this operator, numerous predefined combinations of C
and γ were tested in a loop of its subprocesses. In these subprocesses, a
cross-validation (x-validation) split the data into 5 parts. From these 5
parts, 4 were used for training and one for validation. On the basis of all
4 training data sets, the SVM successively created a model and pre-
dicted the validation performance for a given set of C and γ combina-
tions. The result of the Optimize Parameter operator was the x-validation
performance. This performance is the arithmetic mean of the accuracy
of the 5 validation data sets with the best combination of C and γ out of
the grid search.

On the basis of the best combination of C and γ, the SVM built the
final classification model using all training data. In a next step, the
model was tested with the whole data of the training set (80% of the
whole data set) to get the training performance. The training perfor-
mance shows how accurately the model is able to predict the data used
to train the model. To get the test performance of the test data (20% of
the whole data set), the test data set was normalized using the stan-
dardization model of the training data and subsequently the final model
was tested.

The overall process with the three different types of results and the
related performances is shown in Fig. 2. The different layers for grid
search, training and testing are connected and fully automated.

The performance value of the trainings and test result shows how
well the models were able to perform on the training data and the new
test data. In a previous work, we investigated data mining models that
were only trained by an x-validation and found that the x-validation
performance is not meaningful enough to check the performance of the
trained model. For this reason, it is necessary to test independent data
on the final model to check the performance [31]. If the three perfor-
mances in our data mining process (Fig. 2) are close together, our
model has a high generalization and is able to predict new data as good
as the training data.

2.9.2. Common performance metrics
The three different classification results of the developed process

were summarized in confusion matrixes [33]. The major diagonal of the
matrix shows the correctly classified data and the outside shows the
incorrectly classified data. The overall accuracy in the confusion matrix
was calculated by dividing the sum of the entries from the major di-
agonal by the total number of samples with the best combination of C
and γ [34]. Fig. 3 shows a confusion matrix for a two-class problem.

As the overall accuracy does not indicate how the accuracy is dis-
tributed in the individual classes, the parameters, the true positive rate

(TP), the false positive rate (FP), the true negative rate (TN) and the
false negative rate (FN) defined in Fig. 3 were calculated from the
confusion matrix. The true positive rate (TP) is the rate of objects
correctly classified as positive. The false positive rate (FP) refers to
negative objects incorrectly classified as positive. The true negative rate
(TN) corresponds to negative objects that are correctly classified as
negative and the false negative rate (FN) represents the negative objects
that are incorrectly classified [35,36]. The common performance me-
trics calculated from the confusion matrix like accuracy, precision, re-
call and kappa are explained in [37].

3. Results

This section reports the results from the data mining process after
different data preprocessing methods and two different data split
techniques have been applied. Preprocessing, feature selection and data
split are compared in Section 3.1. and the different parameters are
compared in Section 3.2. The success of the different methods is com-
pared based on the test performance and the kappa value of the test
data for the developed data mining models.

3.1. Classification using morphological parameters

Fig. 4 shows representative laser microscopy images from tested
samples with either a pearlitic, martensitic or bainitic second phase in a
ferritic matrix as well as the corresponding binary images obtained by
threshold value segmentation. SEM micrographs in Fig. 4c, f and i
shows examples of typical second phase objects for each of the three
different types of samples. In the overview images, it can be seen that
size and distribution of the second phase objects vary strongly among
the different types of test samples. The samples with the pearlitic
second phase, as shown in Fig. 4a–c, exhibit objects with diameters up
to 100 µm, which are partially connected and aligned in the rolling
direction. On the contrary, the second phase objects in the samples with
the bainitic second phase are much smaller and homogeneously dis-
tributed in the microstructure. The second phase objects in the mar-
tensitic dual-phase structure also exhibit diameters in the range of
100 µm and are strongly elongated in the rolling direction.

The morphological parameters (as defined in Table 1) of each object
were measured and taken as input for the data mining process. In total,
the data contains 4476 objects, from which 2586 objects were allocated
to the martensite class, 564 to the pearlite class and 1326 to the bainitic
class.

3.1.1. Classification results of the shuffled data split
The data was shuffled and divided into training and test data in a

ratio of 80:20. For the shuffled data, the martensite class contained 517

Fig. 3. Confusion matrix for a two-class problem.
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objects, whereas 112 objects were considered for the pearlite class and
265 for the bainite class, respectively. From this data, different datasets
were used for the experiments, as summarized in Table 2.

As shown in Table 3, dataset 1 yielded an x-validation performance
of 85.03% ± 1.24% and a training performance of 89.78%. The total
accuracy of the test data was 84.80%. The values of test and training
performance were close to each other implying that the model can
perform a reproducible classification on unknown test data as well as on
training data.

For dataset 2, which was transformed to log standard distribution
before standardization, the x-validation performance was
87.60% ± 0.87%. The training performance was 91.57%. The total
test data accuracy was close to the training data accuracy with 86.82%.

The higher performance values of dataset 2 demonstrated that the
log transformation of the input data improves the result of the classi-
fication and the quality of the model. In both cases the performance
measurement kappa showed a good result with values larger than 0.7
(Table 3). The value for dataset 2, which was larger than for dataset 1,
also indicated that the model was more efficient in handling data with a

normal distribution than log distributed parameters. The test perfor-
mance of the log transformed data of 86.8% represented a 2.38% in-
crease compared to the raw data by using the same amount of data and
number of parameters.

In the next steps, the parameters listed in Table 1 were reduced to
further improve the classification model. After removing the correlated
parameters, 15 independent parameters remained. These parameters

Fig. 4. Representative laser microscopy images of a pearlitic (a), a bainitic (d) and a martensitic (g) sample as well as corresponding binary images (b, e, and h); the scanning electron
microscopy images show examples of the different substructures for (c) pearlite, (f) bainite, and (i) martensite.

Table 2
Summary of the different datasets that were used to train and test the data mining model.

Name Dataset 1 Dataset 2 Dataset 3 Dataset 4

Number of
parameters

27 27 10 10

Preprocessing Raw Log transformed Raw Log transformed

Table 3
Classification results for the three performance measurements of x-validation, test and training and the kappa values for dataset 1 and dataset 2 for the shuffled data.

Dataset Number of parameters/preprocessing/
data split

Kappa x-validation Accuracy x-
validation [%]

Accuracy training
data [%]

Accuracy test
data [%]

Kappa test
data

Dataset 1 27/raw/shuffled 0.725 ± 0.026 85.03 ± 1.24 89.78 84.80 0.719
Dataset 2 27/log transformed/shuffled 0.774 ± 0.016 87.60 ± 0.87 91.57 86.82 0.758

Table 4
Morphological parameters after removing correlated parameters and para-
meter ranking.

Parameter Weight

Gray value ratio 1
Area density of substructure
Diameter
Ellipse major
Euler number
Diameter max. Inscribed circle area
Area to total area
Ellipse minor
Fiber length
Feret ratio
Stretching F
Shape factor
Area convex/area filled

Perimeter convex/perimeter filled 0
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were weighted using different methods to determine the importance of
the parameters. The results of the weighting process are shown in
Table 4.

According to the weighting processes, the gray value ratio was the
most relevant parameter with a value of 1, followed by the area density
of the substructure and the diameter. The ratio of area convex to area
filled and the ratio of perimeter convex to perimeter filled with values
close to 0 were less relevant. These 15 parameters were further reduced
by a successive backwards elimination according to their weight in
Table 4. The best performance was reached using 10 parameters.

For dataset 3, the x-validation performance was 86.29% ± 0 .29%.
The accuracy was 90.81% for training and 84.58% for testing. The
classification results for dataset 4 showed higher performance values.
As shown in Table 5 the x-validation performance was
87.60% ± 0.87%, the training performance was 90.89% and the test
performance was 87.15%.

The results of dataset 4 showed that the performance of the x-va-
lidation, training data and test data was higher than that of dataset 3.
The performance measurement kappa showed a higher value for dataset
4, which also indicates that the model is more efficient in handling the
log transformed parameters than the raw data (Table 5). In both cases
the kappa value for the test data was greater than 0.7 and in the same
order as in dataset 1 and dataset 2 using 27 parameters. It can be seen
that the test performance of dataset 4 was increased by 3% compared to
dataset 3. Performance comparisons of classification models using 27
parameters and 10 parameters showed that the test performance was
equal in the case of raw data (84.8% with dataset 1 and 84.58% with
dataset 4) and increased from 86.82% (dataset 2) to 87.58% (dataset 4)
for log transformed data. The best classification result in testing with
87.15% accuracy was reached with dataset 4, as shown in Table 6.

The accuracy rate for the martensite class was 94.20% with a pre-
cision of 85.74%, whereas values of 77.80% and 89.90% were found for
the pearlite class and of 77.30% and 89.52% for the bainite class.

3.1.2. Classification results of the sample-wise data split
Moreover, a sample-wise data split was used for dataset 1 and da-

taset 2 to compare the result with the shuffled data split. The data was
divided into a test and a training set, i.e. some of the samples were only
used for training and other samples only for testing. In that case, the
test and the training data sets were completely independent because of
the different samples. In order to train the model, half of the samples of
each class were used. In total, the training data contained 2511 objects,
from which 1203 objects were allocated to the martensite class, 289 to
the pearlite class and 1019 to the bainitic class. The remaining data was
used for testing the model. The test set contained 1894 objects in total,

1290 objects of the martensite class, 252 of the pearlite class and 352 of
the bainitic class.

As shown in Table 7, dataset 1∗ yielded an x-validation performance
of 82.39% ± 0.67%, a training performance of 85.19% and a total test
data accuracy of 72.03%. The values for test and training performance
were divergent and the model was not able to classify unknown test
data as efficiently as training data. For the dataset 2∗, the x-validation
performance was 86.85% ± 1.64% and the training performance
93.76%. The total test data accuracy was 56.66% and hence much
lower than in the training, which means that for independent data the
log transformed data model had produced a less reproducible classifi-
cation.

The results of dataset 1 in the first experiments using the shuffled
data split showed a higher classification result for the test data than the
results of dataset 2. But in this case the x-validation and training per-
formance for dataset 2∗ was higher than for dataset 1∗. Test and training
performance showed a discrepancy of 37.10%, which means that the
model is not able to classify independent data as efficiently as known
data. The gap between test and training performance indicated that the
model is overfitting. This could also be seen from the kappa value of
0.171 (Table 7).

The different sample splits demonstrated that the performance of
the x-validation and training data was lower for the sample-wise data
split than for the shuffled data split. But for both techniques the per-
formance values for the training were greater than 80% and in the same
order. The test performance of the sample-wise split was 72.03% and
hence much lower. In addition, the kappa values for the sample-wise
data split both showed a lower value.

To sum up, the best results for the test data with the developed data
mining process and morphological parameters was reached by using the
shuffled data split and 10 parameters which were log transformed
(dataset 4) with a test accuracy of 87.15%. The results of the classifi-
cation indicated that the morphological parameters of the objects form
a satisfactory basis for a classification, but solely were not sufficient to
perform a stable classification of the different classes. The most im-
portant morphological parameters for classification were the gray value
ratio and the substructure density. Both parameters already contain
information about the substructure. Therefore, in order to improve the
classification performance, additional parameters of the substructure
were tested in the data mining process.

3.2. Classification using substructure parameters of the second phase

In the next step, substructure parameters of the second phase objects
were used for the classification process. The substructure of the second
phase objects differed in appearance for the different classes for a
certain etching. This offered further possibilities for separating the
phases from each other. In order to see the very fine differences of the
phases, high resolution images were necessary, as these structures could
not be resolved in light microscopy images. Electron microscopy offers
the possibility to dissolve these structures and therefore it is used today
as one of the standard methods for the characterization of texture and
crystallographic properties of microstructures [6–12]. In order to allow
for the substructure to be used by data mining models, a methodology
was developed to describe the substructure of an object using the same
morphological parameters as for the second phase objects. The data for
the substructure was created by overlaying the SEM image with the

Table 5
Classification results for the three performance measurements of x-validation, test and training and kappa values for dataset 3 and dataset 4 for the shuffled data.

Dataset Number of parameters/preprocessing/
data split

Kappa x-validation Accuracy x-
validation [%]

Accuracy training
data [%]

Accuracy test data
[%]

Kappa test
data

Dataset 3 10/raw/shuffled 0.750 ± 0.005 86.29 ± 0.29 90.81 84.58 0.716
Dataset 4 10/log transformed/shuffled 0.774 ± 0.016 87.60 ± 0.87 90.89 87.15 0.764

Table 6
Confusion matrix for the classification of the morphological parameters (dataset 4) of the
second phase objects for the three classes (martensite, pearlite and bainite) in Rapid
Miner.

Accuracy: 87.15%

↓Prediction /true→ Martensite Pearlite Bainite Class precision

Martensite 487 24 57 85.74%
Pearlite 7 88 3 89.90%
Bainite 23 1 205 89.52%
Class recall 94.20% 77.80% 77.30%
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segmented light microscope image as a mask. This was necessary in
order to be able to analyze individual objects separately [23]. In the
combined image, the substructure of each second phase object could be
binarized and then be measured. Fig. 5 shows the result of the binar-
ization of a pearlitic object, in which individual, non-connected ce-
mentite particles were marked in different colors. It is important to note
that for pearlite and bainite objects the binarized structure more or less
represents the cementite particles, while for martensitic objects the
binarized structure is related to lath boundaries and cementite particles.
On the basis of the binarized substructure the morphological para-
meters defined in Table 1 were measured.

The average value and the standard variance of the logarithmic
distribution for each of the morphological parameters of all sub-objects
of a single object, as described in Table 1 were used as parameters in
order to describe the substructure of a whole object. These parameters
were used to build the data mining model. Only representative second
phase objects were chosen to demonstrate that the second phase
parameters can be used to distinguish between the different classes
more effectively. Because of the high number of parameters in relation
to the number of objects, only significant parameters were chosen to
train the data mining model. After removing correlated attributes and
weight of the parameters as described in Section 3.1, 5 parameters
(area, fiber length, feret maximum, feret minimum as well as shape
factor) were determined by a backward selection. The average value
and the standard variance of these parameters were used for the clas-
sification. It is important to note that these parameters represent only
geometrical properties of the imaged structures and contain neither
information on physical properties nor on the production process
parameters.

Fig. 6a and b shows examples of the binarized substructure of a

pearlite and a martensite object. The pearlite object exhibits its typical,
lamellar structure composed of alternating layers of ferrite and ce-
mentite in different colors. Martensite shows a fine irregular network
structure related to the lath structure as well as small cementite parti-
cles. The average values of the logarithmic distribution for the max-
imum feret diameter and area parameters of all analyzed objects were
plotted in Fig. 6c and d. It can be seen that for both parameters the
pearlite class shows larger values than the martensite class. The dif-
ferences in the data suggest that these characteristics enable the dis-
tinction is possible with these characteristics.

The 10 most important parameters were used as input for the data
mining model and their influence on the classification result was ana-
lyzed. The data contained parameters of 123 objects that reveal the
characteristic structure of the different phases. The model was trained
for three classes. The classes were evenly distributed, hence each class
contained 41 objects. The data were shuffled and 50% of the objects
were used for training and 50% for testing. The x-validation perfor-
mance was 97.15% ± 5.71% and a kappa value of 0.957 ± 0.086 was
found. The training performance was 100%. The results of the classi-
fication model on the basis of the test data of 88.33% were shown in
Table 8.

For the martensite class, the accuracy rate was 90% with a precision
of 78.26%. In total, only two objects were classified incorrectly and
both were assigned to the bainite class. Both accuracy rate and preci-
sion rate of the pearlite class were 100%, whereas for the bainite class
the corresponding values were 75% and 88.24% respectively.

Overall, the classification performances considering the sub-
structure parameters showed a higher accuracy rate than the one only
based on the object parameters. The kappa value of the substructure
parameters was 0.825 and hence higher than the kappa values for the

Table 7
Classification results for the three performance measurements of x-validation, test and training and the kappa values for dataset 1 and dataset 2 for the sample split data.

Dataset Number of parameters/preprocessing/
data split

Kappa x-validation Accuracy x-
validation [%]

Accuracy training
data [%]

Accuracy test data
[%]

Kappa test
data

Dataset 1* 27/raw/sample-wise 0.694 ± 0.011 82.39 ± 0.67 85.19 72.03 0.510
Dataset 2* 27/log transformed/sample-wise 0.774 ± 0.029 86.85 ± 1.64 93.76 56.66 0.171

Fig. 5. Combined segmented LOM and SEM image; the individual cementite particles of the pearlite are shown in different colors.
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morphological parameters of the objects.
In Table 9: Summary of the classification results for different data-

sets whereby the number of parameters, preprocessing methods and
data splits were changed. The SVM parameter C and γ, the total test
accuracy and kappa of the classification are shown.Table 9 the different
classification experiments described in Sections 3.1 and 3.2 are sum-
marized together with the corresponding parameters C and γ as well as
test accuracy and kappa.

As the table above shows, the results of the test data where the data
are split sample-wise were much lower than with the shuffled data. In
this case the kappa values support these results with values between
0.519 and 0.171 for the sample-wise split compared to values between
0.716 and 0.825 for shuffled data. The best results for the test data
using the developed data mining process was reached for dataset 4 and

the substructure parameters. The γ-values, which define the impact of a
single training example, with low values meaning ‘far’ and high values
meaning ‘close’, were low in all cases and showed values between
0.0272 and 0.00048. The lowest value was reached for the sub-
structure. The C parameter, which is a parameter that allows one to
trade off training errors and model complexity, showed lower values for
datasets 3 and 4 than for datasets 1 and 2.

4. Discussion

The results of our data mining models demonstrate that the devel-
oped data mining process is able to build models that can classify dif-
ferent phases within steel samples. Based on the developed process
chain it is possible to train and test the data gained from a quantitative
analysis of the microstructure and its substructure in order to auto-
matically build the final model.

The results of the classification on the basis of the given data with
different datasets show that data preprocessing improves the results.
The kappa values of the shuffled dataset indicate a good classification
performance. The test accuracy of the classification can be improved by
2.4% for 27 parameters and by 3% for 10 parameters using the log
transformed dataset instead of raw data. Furthermore, filter methods
show a way to get a high performance while simultaneously reducing
the complexity of the model. Decreasing the number of parameters from
27 to 10 leads to less complex models with smaller C values and pro-
vides for an equal performance both in training and testing with raw

Fig. 6. Segmented and etched substructure of (a) a pearlite object and (b) a martensite object; comparison of the (c) Feret maximum and (d) area parameter for pearlite and martensite.

Table 8
Confusion matrix of the classification of the substructure parameters for the three classes
martensite, pearlite and bainite in Rapid Miner.

Accuracy: 88.33%

True pred. Martensite Pearlite Bainite Class precision

Martensite 18 0 5 78.26%
Pearlite 0 20 0 100.00%
Bainite 2 0 15 88.24%
Class recall 90.00% 100.00% 75.00%

Table 9
Summary of the classification results for different datasets whereby the number of parameters, preprocessing methods and data splits were changed. The SVM parameter C and γ, the total
test accuracy and kappa of the classification are shown.

Morphological parameter Number of parameters/preprocessing/data split C γ Accuracy test data [%] Kappa test data

Dataset 1 27/raw/shuffled 220,000 0.0036 84.80 0.719
Dataset 2 27/log transformed/shuffled 260,000 0.0019 86.82 0.758
Dataset 3 10/raw/shuffled 184,000 0.0272 84.58 0.716
Dataset 4 10/log transformed/shuffled 155,000 0.0059 87.15 0.764
Dataset 1* 27/raw/sample-wise 260,000 0.0010 72.03 0.510
Dataset 2* 27/log transformed/sample-wise 300,000 0.0050 56.66 0.171
Substructure 10/log transformed/shuffled 272,750 0.00048 88.33 0.825
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data and a higher performance with log transformed data.
From these results it can be deduced that the most important 10

parameters contain meaningful information for the separation of the
predefined phases. Table 4 shows that, according to the feature selec-
tion, the gray value ratio and the substructure density are the most
important parameters followed by other morphological parameters. In
contrast to the remaining morphological parameters both parameters
describe the internal structure of the second phase objects. Further-
more, the size of the second phase objects, described for example by
diameter and area, as well as their aspect ratio, which is described by
the ellipse minor and major parameters, seems to play an important role
in distinguishing between the different phases. The binary images of the
bainitic two-phase microstructure used as samples show small second-
phase sub-objects with a rather homogeneous aspect ratio compared to
martensitic or pearlitic microstructures, as shown in Fig. 4. The second-
phase objects in the martensitic and peralitic dual-phase structure ex-
hibit diameters in the range of 100 µm and are strongly elongated in the
rolling direction. Therefore the aspect ratio of these objects is higher
than for bainitic objects.

However, the gray value ratio is the most important parameter. It
describes the structure of the phase occurring in the light microscope on
the basis of its gray values and thus contains information on the sub-
structure of the objects. Of course, the appearance of the phases in light
microscopy images depends on the type of etching and the environ-
mental conditions, and it is partially susceptible to errors. However,
under constant environmental conditions, the etching results can be
compared and differences in texture and color, in case of color etching,
can be identified between the classes on the images. In this work, only
the gray value-based texture of the objects is evaluated as a parameter,
not the color. Pearlitic structures, for example, show large gray value
ranges between minimum and maximum gray value in the light mi-
croscope due to the contrast of the typical lamella structure. In bainitic
and martensitic microstructures, however, the microscope images show
a smaller gray value range with a homogeneous distribution of the gray
values. The structures of bainitic and martensitic objects are often much
finer than the pearlite lamellas and therefore cannot be completely
resolved in the light microscope. Therefore, the blurring of the struc-
tures results in a low-contrast structure with medium gray values [38].
The second most important parameter is the density of the substructure.
It is the only parameter that contains information from the SEM in
addition to light-microscopic information. The extension of the micro-
scopy methods by the electron microscopy has improved the classifi-
cation of different phases also by material science experts. In the SEM,
the very fine structures of the bainitic and martensitic structures can be
resolved and the differences between the phases can be made visible
[6,7]. In order to use this information for classification, the substructure
density parameter is evaluated for each object. This adds a simple
texture parameter with electron microscopic background to the mor-
phology of the phases. The density of the substructure is shifted to
smaller values for bainitic structures in our data, as these consist of
individual cementite particles that are distributed inside the objects and
do not have lamellar or network structures such as perlitic or marten-
sitic structures with higher densities.

When 27 parameters are used and the data is split sample-wise, the
test performance of the classification and the kappa values show lower
accuracy for the given data. In case of a sufficiently large database the
advantage of sample-wise data splitting is that it usually leads to models
that are less susceptible to fluctuations within a class and show better
generalization properties. However, a sufficiently large database must
be available so that the training data can represent a maximum of di-
versity of a class. This is because different samples of the same class
always show small variations. A large group of samples is therefore best
suited to represent the variety of variants in a class. For a data set in
combination with a sample-wise data split this means that part of the
information of the data set on the variation of classes is lost for the data
mining model. In this work, the given data set seems not sufficient to

allow for the advantages of a sample-wise data split. The number of
objects for training using a sample-wise data split is 2511, 30% less
than the training dataset used for the shuffled data, which consists of
3583 objects. This leads to less variation in microstructures in the
training data with a low generalization of the trained model with low
performance values. In addition, the large amount of parameters com-
pared to the amount of objects leads to an overfitting model. This is
indicated by the significant difference between test and training accu-
racy. Overfitting means that a model describes noise instead of the
underlying relationship. This occurs when a model begins to adapt to
random variations in the training data rather than generalizing from
tendencies. Usually the overfitting of the model results in a poor pre-
diction performance, due to a high sensitivity to minor fluctuations in
the training data [39]. The high values for C might be an additional
indicator that there is some overfitting in our data mining model. In
order to avoid overfitting of the model and improve the generalization,
more data and a greater variation of samples are needed. Overall it can
be seen that on the given data a shuffled data split lead to models that at
the same time show higher generalization, less complexity because of
fewer parameters and a higher classification performance.

Moreover, the results in Table 6 demonstrate that the classification
of martensite objects works well with a rate of wrongly classified ob-
jects of 5.80%. The classification of pearlite and bainite is considered to
be satisfying. For these classes, a higher fraction of objects was assigned
to the martensite class and therefore classified incorrectly. One reason
for this could be that although normally all three phases have different
morphological properties; sometimes they look similar on binary
images. This is the case especially when the object areas are below
5 µm2, as demonstrated in Fig. 7 where non-typically objects for the
three classes are shown whose area is smaller than the critical area. In
this case, the form parameters, the density and the gray value ratio
show similar values for all three classes.

In contrast, larger objects show typical appearances of the phase
and are therefore easier to identify. For this reason, some small pearlitic
and bainitic objects can be falsely classified as martensitic, as shown in
Table 6. Therefore, a distinction between different phases based on the
deduced morphological parameters cannot always be evaluated. The
substructure density and gray value ratio parameters indicate that
parameters describing the substructure of the objects are of great im-
portance for the classification. In order to get a better distinction among
the different types of second phase, it is important to find parameters
which represent the substructure of the second phase objects more
precisely like the lamellar structure of typical pearlite [17]. Further-
more, the fact that the data mining model has classified more marten-
sitic objects than objects of the other two phases is related to the dif-
ferent amount of data available for the different classes. The high
classification accuracy of the martensitic phase demonstrates that more
data and more variation results in higher classification accuracy and in
a better generalization of the data mining model. This tendency can also
be seen from the classification results of sample-wise split data trained
with less data. For all these reasons, more data is needed to get better
statistics in general and to balance the amount of objects for the dif-
ferent classes.

To sum up, the results of the classification indicate that morpholo-
gical parameters of the objects form a good basis for a classification, but
solely are not enough to distinguish between different classes, espe-
cially if the data is split sample-wise. The morphological parameters
that were most important for classification, the gray value ratio and the
substructure density, both already contain information on the sub-
structure. Therefore, additional parameters of the substructure are used
to improve classification performance, especially for the pearlite and
bainite classes.

The results of these substructure parameters demonstrate that
pearlite and martensite can be classified successfully based on the bi-
narized substructure. However, the classification performance for the
bainite is still much lower than for the two other classes, as shown in
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Table 8. Most likely it results from the variance of structures re-
presenting this class [7]. Nevertheless, the performances of the classi-
fication based on substructure parameters show a high accuracy rate
with 10 parameters.

It can be deduced from these results that the most important para-
meters contain meaningful information for a further differentiation of
the predefined phases. In the case of the substructure, above all the
mean length and areas and their standard deviation of the objects, are a
suitable measure to distinguish the microstructure classes, as shown in
Fig. 6. For example, the individual sub-objects of pearlite objects with
the typical cementite lamellas have high feret maximum and fiber
length values in the binary images, whereas the shape factor reaches
small values due to its elongated morphology. In comparison, bainitic
structures with finely distributed cementite precipitates have rather
round particles in binary images with large shape factors and small
areas with a more homogeneous ratio of feret maximum and minimum
[7]. The network-like etching structure of martensite shows large va-
lues in area and fiber length for the binary structure. Thus, these
parameters provide the basis for further differentiation parameters,
which can be used in addition to the morphological parameters of the
objects. The results indicate that the parameters of the substructure can
help to further improve the accuracy. Nevertheless, it is important to
note that comparable results for the substructure parameter out of the
segmentation are only possible with reproducible etching and com-
parable segmentation methods. However, in this initial study, only re-
presentative substructure objects with areas greater than 5 µm2 were
considered for the different classes in order to produce the data in the
first step. This leads to higher accuracy of the classification compared to
using all objects because the model can be built with characteristic
data. In the next step, the substructure parameters for all second-phase
objects should be measured and tested in the SVM model so that the
various appearances of the substructure in one class is included in the
data. Furthermore, the different parameters for second-phase objects
and substructures have to be combined in one model and the significant
parameters of both have to be found in order to improve the classifi-
cation accuracy. However, such information could also be used to

further improve classification results. For the initial tests using mor-
phological parameters for a microstructure classification in steel, the
parameters show a good performance for second-phase objects and for
the substructure.

The study shows that this data mining process can distinguish be-
tween different classes of steel based on light optical and SEM images.
This is one of the major advantages of this approach in comparison with
EBSD-based classification, which is extremely time-consuming and
cannot be used in daily quality control. This method allows closing the
gap between the subjective metallographers classification and the
precise EBSD classification. Additionally, the combination of a classi-
fication by using data mining methods and morphological parameters
can help to understand the important parameters for different classes
and could be used for quantitative microstructure analysis. Another
important point to mention in this study is that the assignment of the
images to each microstructure class (the so-called ground truth) was
made by materials experts before the classification step. This means
that in the first step the knowledge of the model is based on expert
opinions. The application of the model remains the same so that the
classification results have the same fundamental error. Due to that the
classification results are independent of the user’s knowledge and per-
sonal opinion. In order to find a completely objective way without re-
lying on a preclassification by experts, data mining methods could be
used to identify different classes in case of unsupervised learning and
using other data mining methods like CNNs. Furthermore, new para-
meters for the substructure could be developed and tested. Otherwise
the models could be extended by using EBSD data which could be in-
tegrated in the data mining process under the condition that sufficient
data is available for the database. In addition, the bainitic class allo-
cated all objects that are neither martensite nor pearlite. So the bainitic
class has to be divided into subclasses according to Zajac et al. [6] and
Gerdemann [10], enabling the model to distinguish more precisely
between different types of bainite. In the future three dimensional
structures could help to collect large amounts of data and offer the
opportunity to cut the objects in different levels so that the connection
to the polished surfaces of the samples is possible. In addition,

Fig. 7. Representative scanning electron microscopy images of a non-typical martensitic (a), a non-typical pearlitic (b) and a non-typical bainitic (c) object as well as corresponding
binary images used to compute the area density of the substructure in an object (d–f).
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parameters from other techniques like EBSD could be added to the
database in order to further improve the precision of the classification.

5. Conclusion

The results of the present work demonstrate the feasibility of an
objective classification of different structures in steel on the basis of
morphological parameters by data mining methods. The process in
Rapid Miner with the SVM as classifier showed good classification re-
sults for the three classes martensite, pearlite and bainite. We were able
to show how to develop a process for the classification of micro-
structures. Furthermore, data preprocessing and feature selection could
at the same time improve the classification results in order to make the
model less complex and increase the generalization. Additionally, we
found significant differences in the results between shuffled data split
and sample-wise data split. The integration of substructure parameters
in the classification process has shown high accuracy using fewer
parameters. Comparable results for the morphological microstructural
parameter were only possible with reproducible etching and segmen-
tation methods. In order to further improve the accuracy, characteristic
parameters of the second-phase objects and the substructure could be
combined and more data should be produced in order to get statistically
sufficient results and improve generalization.
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