1 INTRODUCTION
This paper introduces a method for optimization of continuous nonlinear functions. The method was discovered through simulation of a simplified social model; thus the social metaphor is discussed, though the algorithm stands without metaphorical support. This paper describes the particle swarm optimization concept in terms of its precursors, briefly reviewing the stages of its development from social simulation to optimizer. Discussed next are a few paradigms that implement the concept. Finally, the implementation of one paradigm is discussed in more detail, followed by results obtained from applications and tests upon which the paradigm has been shown to perform successfully. Particle swarm optimization has roots in two main component methodologies. Perhaps more obvious are its ties to artificial life (A-life) in general, and to bird flocking, fish schooling, and swarming theory in particular. It is also related, however, to evolutionary computation, and has ties to both genetic algorithms and evolutionary programming. These relationships are briefly reviewed in the paper.