یادگیری ماشینی - تشخیص استرس - رسانه اجتماعی - پردازش زبان طبیعی
کلمات کلیدی انگلیسی
Machine Learning - Stress Detection - Social Media - Natural Language Processing
doi یا شناسه دیجیتال
https://doi.org/10.1016/j.procs.2022.12.183
با خرید این کالا; ترجمه فارسی مقاله، مقاله انگلیسی، پاورپوینت و ترجمه خلاصه قابل دانلود خواهد بود. بلافاصله پس از خرید، دکمه دانلود ظاهر شده و محصول به ایمیل شما نیز ارسال خواهد گردید.
۰.۰(بدون امتیاز)
امتیاز دهید
فهرست مطالب
چکیده
1. مقدمه
2. تحقیقات مرتبط
3. موضوعات و روش ها
4. نتیجه و بحث
5. نتیجه گیری
منابع
تصاویر فایل ورد ترجمه مقاله (جهت بزرگنمایی روی عکس کلیک نمایید)
فایل پاورپوینت این مقاله
در کنار ترجمه مقاله، فایل پاورپوینت این مقاله نیز ایجاد شده و در این محصول قرار داده شده است که پس از خریداری به همراه ترجمه قابل دانلود خواهد بود. تعداد اسلایدهای این پاورپوینت 18 می باشد و آماده ارائه در دانشگاه یا سایر سمینارها است.
فایل خلاصه ترجمه
در صورتی که نیاز به خلاصه ای از متن ترجمه این مقاله دارید، می توانید از فایل خلاصه ترجمه استفاده نمایید که به این محصول اضافه شده است. خلاصه ترجمه این مقاله در 7 صفحه در فایل word انجام شده و داخل بسته قرار گرفته است.
نمونه چکیده ترجمه متن فارسی
چکیده
تشخیص استرس یک موضوع در حال رشد در زمینه پردازش زبان طبیعی است. به منظور پیش بینی سلامت ذهنی برای بهره بردن از توسعه سیستم های توصیه و ارزیابی های خودکار سلامت ذهنی در تحقیقات قبلی، مطالعه تشخیص استرس اثبات شده است. علاوه بر این، کاربرد گسترده رسانه اجتماعی بعنوان یک منبع داده احتمالی برای توسعه چنین مدل هایی بکار گرفته شده است. تحقیق ما تلاش کرده است تا تشخیص دهد که آیا کاربران رسانه های اجتماعی تحت استرس بودند یا خیر. ما از یک مجموعه داده از Dreaddit شامل پست های یک پلتفرم رسانه اجتماعی محبوب Reddit استفاده کردیم. ما یک مدل یادگیری ماشینی شامل ماشین بردار پشتیبان (SVM)، ناوی بیز، درخت تصمیم، جنگل تصادفی، Bag of Words، و فراوانی اصطلاح- فراوانی سند معکوس (TF-IDF) برای تشخیص استرس را پیشنهاد می کنیم. ارزیابی نهایی مدل امتیاز 80.00% F-1 و درستی 75.00% را نتیجه داد، و هر دو توسط SVM امتیاز داده شدند.
2. تحقیقات مرتبط
چندین تحقیق تلاش کردند تا از طریق یادگیری ماشینی و با روش های مختلف استرس را تشخیص دهند. یک تحقیق از موسسه ملی فناوری سوراتکل در هند با استفاده از مجموعه داده WESAD بین افراد دارای استرس و افراد بدون استرس براساس داده های موجود تمایز قائل می شود. نتایج این تحقیق از KNN (شبکه K-نزدیکترین)، DT (درخت تصمیم)، AB (AdaBoost)، و SVM استفاده کرد که به درستی 81.65% تا 93.20% دست یافت [8]. تحقیق دیگری که از مجموعه داده WESA استفاده می کند، از موسسه ملی فناوری در هند است که هدف آن تشخیص استرس در یک فرد است. روش های استفاده شده، KNN (شبکه K-نزدیکریتن)، LDA (تحلیل تشخیص خطی)، RF (جنگل تصادفی)، AB، و SVM هستند که به ترتیب امتیاز F1 محاسبه شده 83.34% و 65.73% را ایجاد می کنند [9].
تحقیق دیگری در موسسه فناوری اطلاعات جیپی در هند انجام شد که از یک مجموعه داده شامل 206 دانش آموز بعنوان یک نمونه آزمایشی استفاده می کند. این تحقیق با استفاده از LR (رگرسیون لجستیکی)، ناوی بیز، جنگل تصادفی، و SVM و با استفاده مشخص از روشی با نام اعتبارسنجی 10 برابری متقابل (شیوه ای که در آن روش برازش های ده برابری انجام می شود و از 90% داده های مجموعه داده بعنوان آموزش استفاده می کند) با استفاده از SVM امتیاز 85.71% را بدست آورد.