ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
ABSTRACT
This paper presents a qualitative design tool for evaluation of the risk for fluid power pitch systems. The design tool is developed with special attention to industry standard failure analysis methods and is aimed at the early phase of system design. Firstly, the concept of Fault Tree Analysis is used for systematic description of fault propagation linking failure modes to system effects. The methodology is conducted solely on a circuit diagram and functional behavior. The Failure Mode and Effects Criticality Analysis is subsequently employed to determine the failure mode risk via the Risk Priority Number. The Failure Mode and Effect Criticality Analysis is based on past research concerning failure analysis of wind turbine drive trains. Guidelines are given to select the severity, occurrence and detection score that make up the risk priority number. The usability of the method is shown in a case study of a fluid power pitch system applied to wind turbines. The results show a good agreement to recent field failure data for offshore turbines where the dominating failure modes are related to valves, accumulators and leakage. The results are further used for making design improvements to lower the overall risk of the pitch system. Copyright © 2017 John Wiley & Sons, Ltd.
7. CONCLUSIONS
A design tool for risk evaluation was proposed to facilitate qualitative failure analysis of fluid power pitch systems. Based on reliability field studies of multi-megawatt wind turbines, it was shown that the pitch system is a large contributor to turbine down time and failure rate. The field data also showed a large number of failures for valves and accumulators. Additionally, leakage faults where seen to be significant. However, the field data did not reveal details of the root causes for failures, and thus, the need for additional failure analysis was established. Past research was shown to focus on quantitative reliability calculation for pitch systems, and only few failure modes were previously considered. During the literature review for this work, no past papers were encountered on creating the qualitative basis. This emphasized the need for the design tool. Thus, the objective of the paper was to provide industry development with a systematic framework of known methods to aid in selecting proper system architecture in the early design phase.
The presented design tool was based on the industry standard failure analysis methods FTA and FMECA. FTA was chosen as it enables systematic discovery of relevant failure modes and shows fault propagation through the system. A procedure for performing FTA for fluid power systems was presented, which improves its usefulness when comparing different concepts. FMECA was used to construct a detailed overview of correlation between root cause, failure mode and system effect where the latter two were given by the FTA. The FMECA build upon prior research concerning wind turbine concepts and allowed risk evaluation via the RPN. Guidelines for determining RPN was adapted to pitch systems and standards were established in selecting the severity, occurrence and detection scores.