دانلود رایگان مقاله انگلیسی یک الگوریتم ژنتیک سودمند برای LBP در تشخیص چهره - IEEE 2017

عنوان فارسی
یک الگوریتم ژنتیک سودمند برای LBP در تشخیص چهره
عنوان انگلیسی
A Constructive Genetic Algorithm for LBP in Face Recognition
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
7
سال انتشار
2017
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
کد محصول
E6089
رشته های مرتبط با این مقاله
مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
مهندسی نرم افزار، هوش مصنوعی
مجله
سومین کنفرانس بین المللی تشخیص الگوی و تحلیل تصویر - 3rd International Conference on Pattern Recognition and Image Analysis
دانشگاه
ACL Laboratory at Sharif University of Technology
کلمات کلیدی
تشخیص چهره، الگوی دودویی محلی، الگوریتم ژنتیک، اپراتور سودمند
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


LBP coefficients are essential and determine the priority of gray differences. The objectives of this paper are to reveal this and propose a method for finding an optimal priority through the genetic algorithm. On the other hand, the genetic operators such as initialization and cross-over operators, generate invalid coefficients, defective chromosomes. This paper also recommends a rectifying method for correcting defective chromosomes. Results on the FERET and Extended Yale B datasets indicate that the proposed method has markedly higher recognition rates than LBP.

نتیجه گیری

VII. CONCLUSION


This paper urges a general approach to obtain optimal coefficients of LBP through the genetic algorithm. It also proposes constructive chromosome generators to produce valid chromosomes.


It checks validity of chromosomes, coefficient-sets, during the entire process of the genetic algorithm. The genetic algorithm generates defective chromosomes, not satisfying the summation constraint. The proposed rectification algorithm scrutinizes new chromosomes whether they are valid. Under invalidity, the rectification algorithm repairs the invalid chromosomes.


One of the advantages of the constructive GA for LBP is to make LBP adaptable to new environments based on a specific application. That is, it employs parts of application data to excel itself.


The results on the FERET and Extended Yale B datasets indicate that the proposed method successfully leads to higher face recognition rates than LBP.


بدون دیدگاه