منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

ترجمه مقاله ویژگی های توجه عمیق برای جداسازی پروستات در سونوگرافی - نشریه اشپرینگر

ترجمه مقاله ویژگی های توجه عمیق برای جداسازی پروستات در سونوگرافی - نشریه اشپرینگر
قیمت خرید این محصول
۵۱,۰۰۰ تومان
دانلود مقاله انگلیسی
عنوان فارسی
ویژگی های توجه عمیق برای جداسازی پروستات در سونوگرافی
عنوان انگلیسی
Deep Attentional Features for Prostate Segmentation in Ultrasound
صفحات مقاله فارسی
11
صفحات مقاله انگلیسی
9
سال انتشار
2018
رفرنس
دارای رفرنس در داخل متن و انتهای مقاله
نشریه
اشپرینگر - Springer
فرمت مقاله انگلیسی
pdf و ورد تایپ شده با قابلیت ویرایش
فرمت ترجمه مقاله
pdf و ورد تایپ شده با قابلیت ویرایش
فونت ترجمه مقاله
بی نازنین
سایز ترجمه مقاله
14
نوع مقاله
ISI
نوع نگارش
Conference paper
نوع ارائه مقاله
کنفرانس
کد محصول
11586
وضعیت ترجمه عناوین تصاویر و جداول
ترجمه شده است ✓
وضعیت ترجمه متون داخل تصاویر و جداول
ترجمه شده است ✓
وضعیت ترجمه منابع داخل متن
به صورت عدد درج شده است ✓
وضعیت فرمولها و محاسبات در فایل ترجمه
به صورت عکس، درج شده است ✓
ضمیمه
ندارد ☓
بیس
نیست ☓
مدل مفهومی
ندارد ☓
پرسشنامه
ندارد ☓
متغیر
ندارد ☓
رفرنس در ترجمه
در انتهای مقاله درج شده است
رشته های مرتبط با این مقاله
پزشکی، مهندسی پزشکی
گرایش های مرتبط با این مقاله
ایمنی شناسی پزشکی ، خون و آنکولوژی ، پردازش تصاویر پزشکی
دانشگاه
آزمایشگاه ملی مهندسی فناوری ملی برای سونوگرافی پزشکی، دانشکده مهندسی پزشکی، مرکز علوم بهداشتی، دانشگاه شنژن، چین
doi یا شناسه دیجیتال
https://doi.org/10.1007/978-3-030-00937-3_60
۰.۰ (بدون امتیاز)
امتیاز دهید
فهرست مطالب
چکیده
1- مقدمه
2- ویژگی‌های توجه عمیق برای جداسازی
2-1 بررسی کلی روش
2-2 ویژگی‌های توجه عمیق
3- آزمایش‌ها
3-1 مواد
3-2 استراتژی‌های آموزش دادن و آزمایش کردن
3-3 عملکرد جداسازی
4- نتیجه‌گیری
تصاویر فایل ورد ترجمه مقاله (جهت بزرگنمایی روی عکس کلیک نمایید)
       
نمونه چکیده متن اصلی انگلیسی

Abstract


Automatic prostate segmentation in transrectal ultrasound (TRUS) is of essential importance for image-guided prostate biopsy and treatment planning. However, developing such automatic solutions remains very challenging due to the ambiguous boundary and inhomogeneous intensity distribution of the prostate in TRUS. This paper develops a novel deep neural network equipped with deep attentional feature (DAF) modules for better prostate segmentation in TRUS by fully exploiting the complementary information encoded in different layers of the convolutional neural network (CNN). Our DAF utilizes the attention mechanism to selectively leverage the multi-level features integrated from different layers to refine the features at each individual layer, suppressing the non-prostate noise at shallow layers of the CNN and increasing more prostate details into features at deep layers. We evaluate the efficacy of the proposed network on challenging prostate TRUS images, and the experimental results demonstrate that our network outperforms state-of-the-art methods by a large margin.


 

1 Introduction


Prostate cancer is the most common noncutaneous cancer and the second leading cause of cancer-related deaths in men [9]. Transrectal ultrasound (TRUS) is the routine imaging modality for image-guided biopsy and therapy of prostate cancer. Segmenting prostate from TRUS is of essential importance for the treatment planning [10], and can help surface-based registration between TRUS and preoperative MRI during image-guided interventions [11]. However, accurate prostate segmentation in TRUS remains very challenging due to the missing/ambiguous boundary and inhomogeneous intensity distribution of the prostate in TRUS, as well as the large shape variations of different prostates (see Fig. 1).

نمونه چکیده ترجمه متن فارسی
چکیده

تقسیم خودکار پروستات در ﺳﻮﻧﻮﮔﺮاﻓﯽ ﺗﺮاﻧﺲ رﮐﺘﺎل (TRUS) برای بافت‌برداری تصاویر هدایت‌شده‌ پروستات و برنامه‌ریزی درمان بسیار حائر اهمیت می‌باشد. همچنین به‌دلیل مرز مبهم و توزیع شدت غیرهمگن پروستات در TRUS، توسعه دادن اینگونه راه‌حل‌های خودکار هنوز چالش‌برانگیز باقی‌مانده است. در این پژوهش، یک شبکه‌ی عصبی عمیق جدید که با ماژول‌های ویژگی توجه عمیق (DAF) مجهز شده است، برای جداسازی بهتر پروستات در TRUS با استفاده از استخراج کردن اطلاعات مکمل کدگذاری‌شده در لایه‌های مختلف شبکه‌ی عصبی پیچشی (CNN) توسعه داده شده است. همچنین DAF متعلق به ما جهت انتخاب قدرت نفوذ ویژگی‌های چندگانه‌ی ادغام‌شده از طریق لایه‌های مختلف برای تصحیح کردن ویژگی‌های هر لایه‌ی منحصربه‌فرد، متوقف کردن سرو‌صدای غیرپروستات در لایه‌های کم‌عمق CNN و افزایش دادن تعداد جزئیات پروستات درون ویژگی‌های لایه‌های عمیق از مکانیزم توجه استفاده می‌کند. ما تأثیر شبکه‌ی پیشنهادی را بر روی تصاویر چالش‌بر‌انگیز TRUS پروستات و همچنین نتایج تجربی ارزیابی می‌کنیم تا عملکرد بهتر روش‌های نوین را به‌وسیله‌ی یک تفاوت مزیت بزرگ نشان دهیم.

 

1- مقدمه

سرطان پروستات به‌عنوان رایج‌ترین سرطان غیرپوستی شناخته می‌شود و دومین سرطان ایجاد‌کننده‌ی مرگ در مردان می‌باشد ]9[. فراوادرمانی ترانس‌رکتال (TRUS) یک حالت تصویر‌برداری معمول برای بافت‌برداری تصاویر هدایت‌شده‌ و درمان سرطان پروستات می‌باشد. جداسازی پروستات از طریق TRUS برای برنامه‌ریزی درمان بسیار حائز اهمیت می‌باشد ]10[ و می‌تواند به تثبیت مبتنی بر سطح بین TRUS و MRI قبل از عمل در هنگام مداخلات تصاویر هدایت‌شده کمک نماید ]11[. همچنین به‌دلیل از بین رفتن یا مبهم بودن مرز و توزیع شدت غیرهمگن پروستات در TRUS و همچنین تغییرات شکلی بزرگ پروستات‌های مختلف، جداسازی دقیق پروستات در TRUS هنوز چالش‌بر‌انگیز باقی‌مانده است (شکل 1 مشاهده شود).


بدون دیدگاه