ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
Let S be a semigroup with 0 and R be a ring with 1. We extend the definition of the zero-divisor graphs of commutative semigroups to not necessarily commutative semigroups. We define an annihilating-ideal graph of a ring as a special type of zero-divisor graph of a semigroup. We introduce two ways to define the zerodivisor graphs of semigroups. The first definition gives a directed graph Γ(S), and the other definition yields an undirected graph Γ(S). It is shown that Γ(S) is not necessarily connected, but Γ(S) is always connected and diam(Γ(S)) ≤ 3. For a ring R define a directed graph APOG(R) to be equal to Γ(IPO(R)), where IPO(R) is a semigroup consisting of all products of two one-sided ideals of R, and define an undirected graph APOG(R) to be equal to Γ(IPO(R)). We show that R is an Artinian (resp., Noetherian) ring if and only if APOG(R) has DCC (resp., ACC) on some special subset of its vertices. Also, It is shown that APOG(R) is a complete graph if and only if either (D(R))2 = 0, R is a direct product of two division rings, or R is a local ring with maximal ideal m such that IPO(R) = {0, m, m2 , R}. Finally, we investigate the diameter and the girth of square matrix rings over commutative rings Mn×n(R) where n ≥ 2.