دانلود رایگان مقاله چارچوبی برای زمان واقعی تجزیه و تحلیل داده های توییتر

عنوان فارسی
چارچوبی برای زمان واقعی تجزیه و تحلیل داده های توییتر
عنوان انگلیسی
A framework for real-time Twitter data analysis
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
7
سال انتشار
2015
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E751
رشته های مرتبط با این مقاله
مهندسی کامپیوتر و مهندسی فناوری اطلاعات
گرایش های مرتبط با این مقاله
امنیت اطلاعات و اینترنت و شبکه های گسترده
مجله
ارتباطات کامپیوتر - Computer Communications
دانشگاه
دانشگاه پالرمو در ایتالیا
کلمات کلیدی
سنجش اجتماعی، تجزیه و تحلیل توییتر، تشخیص موضوع
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Twitter is a popular social network which allows millions of users to share their opinions on what happens all over the world. In this work we present a system for real-time Twitter data analysis in order to follow popular events from the user’s perspective. The method we propose extends and improves the Soft Frequent Pattern Mining (SFPM) algorithm by overcoming its limitations in dealing with dynamic, real-time, detection scenarios. In particular, in order to obtain timely results, the stream of tweets is organized in dynamic windows whose size depends both on the volume of tweets and time. Since we aim to highlight the user’s point of view, the set of keywords used to query Twitter is progressively refined to include new relevant terms which reflect the emergence of new subtopics or new trends in the main topic. The real-time detection system has been evaluated during the 2014 FIFA World Cup and experimental results show the effectiveness of our solution.

نتیجه گیری

5. Conclusion


In this work we presented a framework for real-time analysis of Twitter data in order to detect relevant topics discussed by the users. The analysis of the state of the art suggested us to start from an existing technique, i.e. SFPM, which seemed to provide promising results in offline detection scenarios. Then we designed some improvements to SFPM which allowed to use it for real-time detection of social events. We run tests on a dataset collected during the FIFA World Cup 2014 and aimed at evaluating the effectiveness of our solution compared with a basic SFPM approach and two real-time systems.


بدون دیدگاه