ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
In this paper, the problem of simultaneously estimating the structure and parameters of artificial neural networks with multiple hidden layers is considered. A method based on sparse optimization is proposed. The problem is formulated as an `0-norm minimization problem, so that redundant weights are eliminated from the neural network. Such problems are in general combinatorial, and are often considered intractable. Hence, an iterative reweighting heuristic for relaxing the `0-norm is presented. Experiments have been carried out on simple benchmark problems, both for classification and regression, and on a case study for estimation of waste heat recovery in ships. All experiments demonstrate the effectiveness of the algorithm.
در این مقاله مسئله تخمین همزمان ساختار و پارامترهای شبکه های عصبی مصنوعی با چندین لایه مخفی در نظر گرفته می شود. روشی بر مبنای بهینه سازی تنک ارائه می شود. مسئله به صورت یک مسئله کمینه سازی هنجار ℓ0 به گونه ای فرمول بندی می شود که اوزان افزونه از شبکه عصبی حذف می شوند. چنین مسائلی به طور کلی ترکیبی هستند و اغلب حل نشدنی در نظر گرفته می شوند. بنابراین یک وزن دهی مجدد سلسله مراتبی تکراری برای آسان سازی هنجار ℓ0 ارائه می شود. آزمایش هایی روی مسائل محک ساده، برای طبقه بندی و رگرسیون و روی یک مطالعه موردی برای تخمین حرارت تلف شده در کشتی ها، انجام گرفته است. تمامی آزمایش ها بیانگر کارآمدی الگوریتم هستند.