ترجمه مقاله روش های دو بعدی برای زمانبندی/کلاک بندی مدارهای QCA - نشریه IEEE

ترجمه مقاله روش های دو بعدی برای زمانبندی/کلاک بندی مدارهای QCA - نشریه IEEE
قیمت خرید این محصول
۴۱,۰۰۰ تومان
دانلود مقاله انگلیسی
عنوان فارسی
روش های دو بعدی برای زمانبندی/کلاک بندی مدارهای QCA
عنوان انگلیسی
Two-Dimensional Schemes for Clocking/Timing of QCA Circuits
صفحات مقاله فارسی
27
صفحات مقاله انگلیسی
11
سال انتشار
2007
رفرنس
دارای رفرنس در داخل متن و انتهای مقاله
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
فرمت ترجمه مقاله
pdf و ورد تایپ شده با قابلیت ویرایش
فونت ترجمه مقاله
بی نازنین
سایز ترجمه مقاله
14
نوع مقاله
ISI
نوع ارائه مقاله
ژورنال
پایگاه
اسکوپوس
ایمپکت فاکتور(IF) مجله
2.918 در سال 2019
شاخص H_index مجله
113 در سال 2020
شاخص SJR مجله
0.604 در سال 2019
شناسه ISSN مجله
0278-0070
شاخص Q یا Quartile (چارک)
Q2 در سال 2019
کد محصول
11287
وضعیت ترجمه عناوین تصاویر و جداول
ترجمه شده است ✓
وضعیت ترجمه متون داخل تصاویر و جداول
ترجمه نشده است ☓
وضعیت ترجمه منابع داخل متن
به صورت عدد درج شده است ✓
ضمیمه
ندارد
بیس
نیست ☓
مدل مفهومی
ندارد ☓
پرسشنامه
ندارد ☓
متغیر
ندارد ☓
رفرنس در ترجمه
در انتهای مقاله درج شده است
رشته و گرایش های مرتبط با این مقاله
مهندسی برق، مدارهای مجتمع الکترونیک، مهندسی الکترونیک، افزاره های میکرو و نانو الکترونیک، سیستم های الکترونیک دیجیتال
مجله
نتایج بدست آمده در حوزه طراحی مدارها و سیستم های مجتمع به کمک رایانه - Transactions on Computer-Aided Design of Integrated Circuits and Systems
دانشگاه
گروه مهندسی برق و کامپیوتر، دانشگاه شمال شرقی، بوستون، ایالات متحده آمریکا
کلمات کلیدی
کلاک بندی، تکنولوژی در حال ظهور، نانوتکنولوژی، معماری های آتوماتای کوانتومی-خطی سلولی(QCA) ، زمانبندی
کلمات کلیدی انگلیسی
Clocking - emerging technology - nanotechnology - quantum-dot cellular-automata (QCA) architecture - timing
doi یا شناسه دیجیتال
https://doi.org/10.1109/TCAD.2007.907020
فهرست مطالب
چکیده
1.مقدمه
2. خلاصه
3.آنالیز کلاک بندی
4. کلاک بندی دوبعدی QCA
5. کلاک بندی QCA موجی دوبعدی
6. مسیرهای فیدبک
7. نتایج شبیه سازی
A. مالتی پلکسر 2 به 1
B. تمام جمع کننده ی یک بیتی
C. فلیپ فلاپ بازنشانی-تنظیم (RS)
8. نتیجه گیری
تصاویر فایل ورد ترجمه مقاله (جهت بزرگنمایی روی عکس کلیک نمایید)
11287-IranArze     11287-IranArze1     11287-IranArze2
نمونه چکیده متن اصلی انگلیسی
Abstract

At nanoscale, quantum-dot cellular automata (QCA) defines a new device architecture that permits the innovative design of digital systems. Features of these systems are the allowed crossing of signal lines with different orientation in polarization on a Cartesian plane, the potential of high throughput due to efficient pipelining, fast signal switching, and propagation. However, QCA designs of even modest complexity suffer from the negative impact due to the placement of long lines of cells among clocking zones, thus resulting in increased delay, slow timing, and sensitivity to thermal fluctuations. In this paper, different schemes for clocking and timing of the QCA systems are proposed; these schemes utilize 2D techniques that permit a reduction in the longest line length in each clocking zone. The proposed clocking schemes utilize logic-propagation techniques that have been developed for systolic arrays. Placement of QCA cells is modified to ensure correct signal generation and timing. The significant reduction in the longest line length permits a fast timing and efficient pipelining to occur while guaranteeing a kink-free behavior in switching.

I. INTRODUCTION

IN THE PAST few decades, the exponential scaling in feature size and the increase in processing power have been successfully achieved by very large scale integration (VLSI) technology, mostly using CMOS; however, in the not-so-distant future [1], this technology will face serious challenges as the fundamental physical limits of its devices are reached. In recent years, there has been extensive research at nanoscale to supersede the conventional CMOS using the so-called emerging technologies. It is anticipated that these fundamentally different technologies can achieve extremely high densities and high operational speed. Among these new devices, quantum-dot cellular automata (QCA) not only gives a solution at nanoscale but also offers a new method of computation and information transformation (often referred to as processing-in-wire). In terms of feature size, it is projected that a QCA cell of a few-nanometer size can be fabricated through a molecular implementation by a self-assembly process [2], [3]. Sequential as well as combinational designs can be realized using the QCA. Designs based on QCA (such as carry-look-ahead adder, barrel shifter, microprocessors, and field-programmable gate arrays, have been presented in the technical literature [4]–[9].

VIII. CONCLUSION

The QCA has been advocated as a potential device architecture for nanotechnology. The QCA not only gives a solution at nanoscale but also offers a new method of computation and information transformation. However, the QCA designs of even modest complexity suffer from the disadvantage of long vertical lines in the placement of the cells, thus resulting in long delay, slow timing, inability to operate at higher (room) temperature, and sensitivity to thermal fluctuations.

نمونه چکیده ترجمه متن فارسی
چکیده

در مقیاس نانو، آتوماتای سلولی کوانتوم-نقظه ای (QCA)، یک معماری دستگاه جدید را معرفی می کند که اجازه ی طراحی خلاقانه ی سیستم های دیجیتالی را می دهد. ویژگی های این سیستم ها، برخورد مجاز خطوط سیگنال با جهت های مختلف در قطبش بر روی صفحه ی دکارتی، پتانسیل گذردهی بالا با توجه به راه اندازی خط لوله ی کارا، تعویض سریع سیگنال و انتشار است. با این حال، طرح های QCA با حتی پیچیدگی کمتر از تاثیر منفی به دلیل قراردهی صفوف بلند سلول ها در بین نواحی کلاک بندی، موجب افزایش تاخیر، زمانبندی کند، و حساسیت به نوسانات حرارتی می شود. در این مقاله، روش های مختلف برای کلاک بندی و زمانبندی سیستم های QCA معرفی شده اند؛ این روش ها از تکنیک های 2-D که اجازه ی یک کاهش در طول بلندترین صف در هر ناحیه ی کلاک بندی می دهد، استفاده می کنند . قرارگیری سلول های QCA برای تضمین تولید صحیح سیگنال و و زمانبندی، تغییر می کند. کاهش چشمگیر در طول بلندترین صف، اجازه ی یک زمانبندی سریع و راه اندازی خط لوله ی کارامد را در حال تضمین رفتار بدون پیچ خوردگی در تعویض می دهد.

1.مقدمه

در دهه های اخیر، مقیاس گذاری نمایی در اندازه ی ویژگی و افزایش توان پردازش توسط تکنولوژی یکپارچه سازی مقیاس بسیار بزرگ(VLSI)، که اکثراً از CMOS استفاده شده، به دست آمده است؛ با این حال، در آینده ی نه چندان دور[1]، این تکنولوژی با توجه به این که محدودیت های فیزیکی دستگاه هایش سررسیده، با چالش های جدی ای روبرو خواهد شد. در سال های اخیر، تحقیقات گسترده ای در مورد مقیاس نانو برای جانشینی CMOS مرسوم با استفاده از تکنولوژی های در حال ظهور انجام شده است. پیش بینی شده است که این تکنولوژی های اساساً متفاوت، می توانند تراکم زیاد و سرعت عملیاتی بالایی به دست آورند. در میان این دستگاه های جدید، آتوماتای سلولی کوانتومی-نقطه ای(QCA)، نه تنها یک راه حل در مقیاس نانو ارایه می دهد، بلکه یک روش جدید برای محاسبه و انتقال اطلاعات(اکثراً به عنوان پردازش در سیم شناخته می شود) ارایه می دهد. به لحاظ ویژگی اندازه، طرح ریزی شده است که یک سلول QCA چند نانومتری می تواند از طریق پیاده سازی مولکولی توسط یک فرایند خود مونتاژی ساخته شود[2]،[3]. طرح های ترتیبی نیز همانند طرح های ترکیبی می توانند با استفاده از QCA فهمیده شوند. میکروپروسسورها و مدار مجتمع های دیجیتال برنامه پذیر، در مقاله ی فنی نشان داده شده اند[4]-[9].

8. نتیجه گیری

QCA به عنوان یک معماری بالقوه ی دستگاه برای نانوتکنولوژی مورد حمایت واقع شده است. QCA نه تنها در مقیاس نانو راه حل ارائه می کند، بلکه روش جدید محاسبات و انتقال اطلاعات را نیز پیشنهاد می دهد. با این حال، طرح های QCA ساده نیز از عیب صف های طولانی عمودی در قراردادن سلول ها رنج می برند، بدین ترتیب موجب تاخیر طولانی، زمانبندی کند، ناتوانی عملیات در دمای (اتاق) بالاتر، و حساسیت به نوسانات حرارتی می شوند.


بدون دیدگاه