Abstract
As a key component in Accelerator Driven System (ADS), the spallation target is exposed to high irradiation intensity radiation, and a larger amount of heat is deposited on it. Therefore, the cooling of the target is a challenging task in the target design. Integrated target module with a solid beam window, and cooled by reactor primary coolant is a good contender for ADS system. The numerical analysis of two target modules was performed by using finite element code to assess the target cooling capacity. It was found that with uniform inlet velocity, the geometry modification of the inlet could improve the heat transfer effectively. But with non-uniform inlet velocity, the geometry modification of the inlet had little effect on cooling capacity.