دانلود رایگان مقاله انگلیسی پیش بینی بارش در ایالت کرالا در هند با استفاده از روش های هوش مصنوعی - الزویر 2018

عنوان فارسی
پیش بینی بارش در ایالت کرالا در هند با استفاده از روش های هوش مصنوعی
عنوان انگلیسی
Rainfall prediction for the Kerala state of India using artificial intelligence approaches
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
8
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
نوع نگارش
مقالات پژوهشی (تحقیقاتی)
رفرنس
دارد
پایگاه
اسکوپوس
کد محصول
E10205
رشته های مرتبط با این مقاله
مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
هوش مصنوعی
مجله
کامپیوترها و مهندسی برق - Computers and Electrical Engineering
دانشگاه
Centre for Atmospheric Sciences - IIT Delhi - New Delhi - India
کلمات کلیدی
نزدیک ترین K همسایه (KNN)، شبکه عصبی مصنوعی (ANN)، ماشین یادگیری اکسترم (ELM)، مدل سازی پیش بینی شده، هوش مصنوعی
doi یا شناسه دیجیتال
https://doi.org/10.1016/j.compeleceng.2018.06.004
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

ABSTRACT


Three artificial intelligence approaches - K-nearest neighbor (KNN), artificial neural network (ANN), and extreme learning machine (ELM) - are used for the seasonal forecasting of summer monsoon (June-September) and post-monsoon (October-December) rainfall from 2011 to 2016 for the Kerala state of India and performance of these techniques are evaluated against observations. All the aforesaid techniques have performed reasonably well and in comparison, ELM technique has shown better performance with minimal mean absolute percentage error scores for summer monsoon (3.075) and post-monsoon (3.149) respectively than KNN and ANN techniques. The prediction accuracy is highly influenced by the number of hidden nodes in the hidden layer and more accurate results are provided by the ELM architecture (8-15-1). This study reveals that the proposed artificial intelligence approaches have the potential of predicting both summer monsoon and post-monsoon of the Kerala state of India with minimal prediction error scores.

نتیجه گیری

Conclusion


Performances of three artificial intelligence techniques such as K-nearest neighbor (KNN), artificial neural network (ANN), and extreme learning machine (ELM) were evaluated for the prediction of summer monsoon (JJAS) and post-monsoon (OND) rainfall for the Kerala state of India. The performance of the aforementioned approaches has been gauzed by different statistical tests. ELM approach is found to be more accurate than KNN and ANN approaches for the prediction task. There is substantial impact of hidden nodes on the prediction accuracy. ELM structure (8-15-1) provides more accurate results for both JJAS and OND seasons than KNN and ANN techniques in the currently used rainfall dataset. In future, we will further apply different machine learning algorithms for prediction of the chaotic monsoon of southern India. The impacts of climate variability and extreme weather events will also be studied by taking different environmental parameters into consideration.


بدون دیدگاه