7. Conclusion and future work
In this paper, we have analyzed the neighbor discovery problem in low-duty-cycle WSNs, and have derived the time complexity for two protocols respectively. For the ALOHA-like protocol, the expected time to finish ND is O( n log n log log n k ) with k-MPR. Furthermore, if afeedback mechanism is introduced into the system, the expected time is O( n log log n k ). In addition, the lack of knowledge of n results in a factor of two slowdown in comparison with the n-known case. Discussions are presented to solve the issues in real implementations. Furthermore, we have presented another MPR model, i.e., multi-channel MPR model, and pointed out the time complexity of ALOHA-like protocols under this model. Our theoretical results are verified by extensive simulations. In the future, we would like to evaluate these protocols by doing test-bed experiments. Also we would like to extend the protocols to some more realistic situations, e.g. nodes with different clocks, nodes with different duty cycles and more realistic radio models.