ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
Water purification and detoxification is an important topic that protects the environment and ecosystems. The feasibility of using Zeolite MFI as a nanostructured membrane to remove hazardous chemicals from a contaminated water solution is studied in this paper. A non-equilibrium molecular dynamics analysis was performed to see the potentials of the zeolite porous nanosheet to separate the mercury chloride (HgCl2) and copper chloride (CuCl2) from water as two major hazardous contaminants. A reverse osmosis system was simulated and tested at different induced pressures from 10 to 200 MPa. Ion removal, water flux, water molecules accumulation at different locations, number of hydrogen bonds, Van der Waals interactions, ions tracking path and radial distribution function between water molecules and the ions, were investigated in detail. The results indicated that the zeolite MFI nanomembrane can effectively prevent mercury, copper and chlorine ions from permeation while keeping a large water flux through the membrane. This behavior of the zeolite introduces a competitive candidate for the water purification industry and sets it apart from other nanostructured membranes.
1. Introduction
Improving health and lowering carbon footprint are two leading reasons that make water purification a priority. The presence of chemicals and other toxic materials in water sources can cause a broad range of health issues including higher risk of cancer and birth defects. Therefore, it is very important to find a way to keep these impurities out from water. Among the chemicals, copper chloride (CuCl2) is one of the hazardous chemicals that is on the Special Health Hazardous Substances (SHHS) list and can damage the liver, kidneys, nose, irritating the stomach, throat and lung, burn the skin and eyes with possible eye damage [1]. Another hazardous chemical in water that affects human when inhaled and maybe absorbed through the skin is mercury chloride (HgCl2). This hazardous chemical, which is also on the SHHS list, is known as very toxic to aquatic life with long-lasting effects [2]. It can irritate the skin and eyes upon exposure and may cause reproductive damage. Repeated exposure can damage organs, cause cancer and can be fatal
4. Conclusions
By means of non-equilibrium MD simulations, it was shown that how zeolite MFI membrane can be highly efficient for water purification. The two hazardous chemicals, the copper chloride and mercury chloride, were added to water in the simulation box. Various pressures were applied to the system for investigating the separation process in a reverse osmosis system, from 10 MPa to 200 MPa. In all applied pressures to the system, the zeolite membrane rejected 100% of the copper and mercury ions from water with a high chlorine ions rejection of 97.6% at 100 MPa and 93.6% at 200 MPa and 100% at other lower applied pressures. Simultaneous high-water flux and ion rejection, as an important factor in membrane technology, was seen in the implemented zeolite. These behaviors of the zeolite MFI make it a competitive candidate for fast and efficient water purification. Furthermore, with improvement of industrial fabrication technology, it could be produced to be stable and large enough for realistic applications as an earth-abundant and cost-effective material.