ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
An (n, k)q-MDS code C over an alphabet A (of size q) is a collection of q k n−tuples over A such that no two words of C agree in as many as k coordinate positions. It follows that n ≤ q + k − 1. By elementary combinatorial means we show that every (6, 3)4-MDS code, linear or not, turns out to be a linear (6, 3)4-MDS code or else a code equivalent to a linear code with these parameters. It follows that every (5, 3)4-MDS code over A must also be equivalent to linear.
1. Introduction
A linear [n, k]-code of minimum distance d satisfies d ≤ n − k + 1–the Singleton bound [10]. A linear [n, k]-code meeting the Singleton bound is called a linear Maximum Distance Separable, or MDS code. Analogously, when no assumptions regarding linearity are made, an (n, k)-MDS code C over an alphabet A of size q (an (n, k)q-MDS code) is a collection of q k n−tuples over A such that no two words of C agree in as many as k coordinate positions. It follows that n ≤ q + k − 1 (with equality only if q is even). Such codes, when they exist may or may not be linear. Linear MDS codes are much studied in the mathematical and engineering sciences (see [5], [10], or [13]). Under the rubric of MDS codes there are many open questions. In particular, very little is known in the nonlinear case.
1. مقدمه
کد [n, k] خطی با مینیموم (حداقل) فاصله رابطه d ≤ n − k + 1– را ارضا می کند که حد منفرده یا مجموعه تک عنصری [10] را نشان می دهد. کد [n, k] خطی که حد Singleton (منفرده) را تامین می کند، ماکزیمم فاصله تفکیک پذیر خطی یا کد MDS نامیده شده است. به همین ترتیب، زمانی که فرضیاتی در رابطه با خاصیت خطی مطرح نشده باشد، کد (n, k)-MDS C برروی حرف الفبای A در اندازه q ( یک کد an (n, k)q-MDS) مجموعه ای از n تاپل q k برروی A است، به گونه ای که هیچ دو کلمه ای از C با k موقعیت مختصات توافق ندارند. این گونه استنباط می شود که n ≤ q + k − 1 (با تساوی، تنها به شرطی که q زوج باشد). چنین کدهایی، در صورت وجود، به دو صورت خطی یا غیر خطی ظاهر می شوند. کدهای MDS خطی بیشتر در علوم ریاضی و مهندسی مطالعه شده اند (به مراجع [5]، [10]یا [13] نگاه کنید). تحت عنوان کدهای MDS، سئوالات حل نشده زیادی وجود دارد. به ویژه، در مورد نمونه غیر خطی، اطلاعات بسیار کمی بدست آمده است.