5. Summary and conclusions
This study has shown that the heat integration of a torrefaction process into a CHP cycle could be economically profitable over the co-located plants under certain circumstances. While the previous investigation revealed important benefits of the integration with CHP at reduced district heating load, the analysis of the integrated cases considering seasonal operational changes brings a more complete understanding of the annual operation for each scenario. The typical backpressure CHP plant that was analysed in the present work fulfils the district heating demand and, as a result, follows all the annual variations of the DH network (both qualitative and quantitative). The operational analysis of the current study takes into account all major changes that affect the plants performance in order to evaluate the potential of possible integration. Three scenarios to cover the heat requirements of a torrefaction unit (30.3 MWLHV production capacity) were initially evaluated: drum water (Case 1), live steam and low pressure steam (Case 5) and only live steam (Case 6). The analysis showed that integration options using live steam to cover the torrefaction demand have significant benefits. Within the frames of the considered capacity levels and the limitations for the plant operation, the integrated scenario of Case 1 cannot be operated during full-load periods. Reducing the capacity of the torrefaction unit may result into certain improvements, but for purpose of keeping the cases comparable, only Cases 5 and 6 were considered in the current work.