دانلود رایگان مقاله خصوصیات جهت گیری فیبر در تقویت SMC به عنوان ورودی برای طراحی بر اساس شبیه سازی

عنوان فارسی
خصوصیات غیر مخرب جهت گیری فیبر در تقویت SMC به عنوان ورودی برای طراحی بر اساس شبیه سازی
عنوان انگلیسی
Non-destructive characterization of fiber orientation in reinforced SMC as input for simulation based design
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
9
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E491
رشته های مرتبط با این مقاله
مهندسی مواد و مهندسی پلیمر
گرایش های مرتبط با این مقاله
متالوژی، مهندسی مواد مرکب و نانو فناوری و حرارت و سیالات
مجله
ساختار کامپوزیت - Composite Structures
دانشگاه
کایزرسلاوترن آلمان
کلمات کلیدی
خواص مکانیکی، ناهمسانگردی، تست غیر مخرب، تجزیه و تحلیل تصویر کمی
چکیده

Abstract


The macroscopic properties of materials are strongly influenced by their microstructure. This holds in particular for fiber reinforced composites where fiber distribution and orientation are crucial for the reinforcement to serve its purpose. This essential microstructural information can be obtained from high-resolution images using appropriate methods for quantitative image analysis. Sheet molding compounds feature a very dense layered system of reinforcing fibers and a particularly strong X-ray absorption. Therefore, in this case, state-of-the-art fiber orientation analysis based on 3D images obtained by X-ray microtomography faces problems. In this paper, we determine the local fiber orientation in each pixel by the orientation of the anisotropic Gaussian filter yielding the strongest filter response. Hence, the local fiber orientation can be computed without identifying individual fibers. From the thus determined area weighted orientation distribution, the degree of anisotropy and the main fiber orientation are derived. This extremely robust analysis method is applied to 2D slice images from scanning acoustic microscopy and high-resolution 3D microtomography. We show that the Gaussian filter based fiber orientation analysis method yields comparable results for both imaging techniques. Moreover, comparison with fatigue tests performed on the same specimens proves the image analytically determined fiber orientation and the failure behaviour to be strongly correlated. In particular, a critical degree of anisotropy could be identified. For degrees of anisotropy higher than this limit, the samples behave mechanically like a uniaxial material. The paper thus provides experimentally validated evidence for calibrating micro-mechanical models for subsequent simulation of macroscopic material properties using the combination of high-resolution imaging techniques and quantitative image analysis.

نتیجه گیری

4. Conclusions


Knowledge of mechanical properties and structural durability assessment is essential for human safety in the lightweight design of safety-relevant components in aviation or car industry. In essence, the structural durability of a component is influenced mainly by the parameters loading, design (i.e. the shape), material, and manufacturing process. For an estimation of the service life of a component, the service loading and the fatigue strength have to be determined. SMC is a randomly oriented long fiber reinforced composite. The resulting anisotropic behaviour of the material has to be taken into account when estimating the service life and identifying weaknesses of the design of components. More precisely, numerical simulation of macroscopic properties has to incorporate local microstructure characteristics like fiber orientation (degree of anisotropy and preferred orientation) and fiber weight content. In this paper, quantitative image analysis has proved to deliver these essential microstructural data. Two non-destructive imaging techniques – SAM and lCT – combined with local fiber orientation estimation using anisotropic Gaussian filters, yield reliable robust results. The thus derived degree of anisotropy and preferred fiber direction are shown to correlate closely with material behaviour in fatigue experiments. Modern imaging techniques and image analysis methods thus enable improved simulation of mechanical properties as local microstructural differences can be captured and incorporated into the simulation scheme.


بدون دیدگاه