منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله نمایه سازی کارآمد و پردازش کوئری مدل داده حسگر دید در ابر

عنوان فارسی
نمایه سازی کارآمد و پردازش کوئری مدل داده های حسگر دید در ابر
عنوان انگلیسی
Efficient Indexing and Query Processing of Model-View Sensor Data in the Cloud
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
14
سال انتشار
2014
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E423
رشته های مرتبط با این مقاله
مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
مهندسی نرم افزار و معماری سیستم های کامپیوتری
مجله
تحقیقات کلان داده - Big Data Research
دانشگاه
مرکز تحقیقات و فناوری هلاس (CERTH)، یونان
کلمات کلیدی
کلان داده، فهرست مطالب، فروشگاه های کلید-مقدار، نگاشت کاهش، تقریب، بهینه سازی پرس و جو
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


As the number of sensors that pervade our lives increases (e.g., environmental sensors, phone sensors, etc.), the efficient management of massive amount of sensor data is becoming increasingly important. The infinite nature of sensor data poses a serious challenge for query processing even in a cloud infrastructure. Traditional raw sensor data management systems based on relational databases lack scalability to accommodate large-scale sensor data efficiently. Thus, distributed key-value stores in the cloud are becoming a prime tool to manage sensor data. Model-view sensor data management, which stores the sensor data in the form of modeled segments, brings the additional advantages of data compression and value interpolation. However, currently there are no techniques for indexing and/or query optimization of the model-view sensor data in the cloud; full table scan is needed for query processing in the worst case. In this paper, we propose an innovative index for modeled segments in key-value stores, namely KVI-index. KVI-index consists of two interval indices on the time and sensor value dimensions respectively, each of which has an in-memory search tree and a secondary list materialized in the key-value store. Then, we introduce a KVI-index–Scan–MapReduce hybrid approach to perform efficient query processing upon modeled data streams. As proved by a series of experiments at a private cloud infrastructure, our approach outperforms in query-response time and index-updating efficiency both Hadoop-based parallel processing of the raw sensor data and multiple alternative indexing approaches of model-view data.

نتیجه گیری

7. Conclusion


To the best of our knowledge, this is the first work to explore the key-value representation of an interval index for modelview based sensor data management. Different from conventional external-memory index structure with complex node merging and split mechanisms, our KVI-index, resident partially in memory and partially materialized in the key-value store, is easy to maintain in the dynamic sensor data generation environment. Moreover, we proposed a hybrid query processing approach, namely KVI–Scan– MapReduce, integrating the KVI-index, range scan and MapReduce for model-view sensor data in key-value stores. Extensive experiments in a real testbed showed that our approach outperforms in terms of query response time and index updating efficiency not only query processing methods based on raw sensor data, but also all other approaches considered based on model-view sensor data for time/value range and point queries. As a future work, we plan to explore how to process time and value composite queries and join queries based on the KVI-index.


بدون دیدگاه