منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی تشخیص خودکار خطا برای ساختن سیستم فتوولتاییک مجتمع (BIPV) با استفاده از روش سری زمانی - امرالد 2018

عنوان فارسی
تشخیص خودکار خطا برای ساختن سیستم های فتوولتاییک مجتمع (BIPV) با استفاده از روش های سری زمانی
عنوان انگلیسی
Automatic fault detection for Building Integrated Photovoltaic (BIPV ) systems using time series methods
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
12
سال انتشار
2018
نشریه
امرالد - Emerald
فرمت مقاله انگلیسی
PDF
کد محصول
E7517
رشته های مرتبط با این مقاله
مهندسی انرژی، برق، آمار
گرایش های مرتبط با این مقاله
سیستم های انرژی، انرژی های تجدید پذیر، تولید، انتقال و توزیع
مجله
پروژه محیط زیست و مدیریت دارایی - Built Environment Project and Asset Management
دانشگاه
University of Texas at Arlington - Arlington - Texas - USA
کلمات کلیدی
انرژی تجدید پذیر، تحلیل سری زمانی، تشخیص خطا خودکار، عملکرد انرژی، مدیریت عملیات و تولید، نظارت بر عملکرد
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Purpose – Faults in the actual outdoor performance of Building Integrated Photovoltaic (BIPV) systems can go unnoticed for several months since the energy productions are subject to significant variations that could mask faulty behaviors. Even large BIPV energy deficits could be hard to detect. The purpose of this paper is to develop a cost-effective approach to automatically detect faults in the energy productions of BIPV systems using historical BIPV energy productions as the only source of information that is typically collected in all BIPV systems. Design/methodology/approach – Energy productions of BIPV systems are time series in nature. Therefore, time series methods are used to automatically detect two categories of faults (outliers and structure changes) in the monthly energy productions of BIPV systems. The research methodology consists of the automatic detection of outliers in energy productions, and automatic detection of structure changes in energy productions. Findings – The proposed approach is applied to detect faults in the monthly energy productions of 89 BIPV systems. The results confirm that outliers and structure changes can be automatically detected in the monthly energy productions of BIPV systems using time series methods in presence of short-term variations, monthly seasonality, and long-term degradation in performance. Originality/value – Unlike existing methods, the proposed approach does not require performance ratio calculation, operating condition data, such as solar irradiation, or the output of neighboring BIPV systems. It only uses the historical information about the BIPV energy productions to distinguish between faults and other time series properties including seasonality, short-term variations, and degradation trends.

نتیجه گیری

Conclusions


The results of this study show that time series methods can take advantage of historical information in PV energy production time series to distinguish between faults and the other time series properties including seasonality, short-term variations, and degradation trends. In other words, it verifies the hypothesis that the rich energy production history provides invaluable information to detect faulty behaviors. Development of the proposed cost-effective approach to detect faults using the historical energy production could make the automatic fault detection applicable to all sizes of BIPV systems integrated with any buildings, even those that are in most remote areas. In the future, cost-effective prototype equipment should be developed to automatically detect faults using the proposed methodology detailed in this manuscript.


بدون دیدگاه