منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله رفتار پیش خرید بلیط هواپیما

عنوان فارسی
رفتارهای پیش خرید بلیط هواپیما
عنوان انگلیسی
Advance purchase behaviors of air tickets
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
8
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E407
رشته های مرتبط با این مقاله
علوم فنون هوایی
مجله
مجله مدیریت حمل و نقل هوایی - Journal of Air Transport Management
دانشگاه
بخش حمل و نقل و لجستیک مدیریت، دانشگاه ملی چیائو تونگ، تایوان
کلمات کلیدی
رفتارهای پیش خرید ، مدل لوجیت چند جمله ای، داده های تراکنشی، مدیریت درآمد
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

abstract


The advance purchase behaviors of air passengers are essential to develop revenue management strategies of airlines, which should be carefully studied. Based on this, this study aims to empirically investigate the advance purchase behaviors for airline tickets based on the airline transaction data of Taipei-Macau (TPEMFM) route in 2011. In order to model the advance purchase behaviors, multinomial logit models are used. To facilitate model development, the advance purchase horizon is divided into five time periods by three segmentation methods, including equal time periods, time periods with equal number of purchases and time periods according to professional judgment. Several factors contributing to advance purchase behaviors are examined, including price, flight schedule (time of day, day of week, and months of year) and fare class preferences. The estimation results show that the model with segmentation of equal time periods performs best in terms of adjusted rho-square and AIC indices. It is also found that air passengers tend to purchase tickets earlier for the flights in the morning and in hot season, suggesting the fare and seat inventory control should be varied for different flights

نتیجه گیری

5. Conclusions


This study attempts to empirically investigate the advance purchase behaviors of air tickets by using multinomial logit models based on the airline direct transaction data of Taipei-Macau (TPEMFM) route in 2011. To facilitate model development, the advance purchase horizon is divided into five time periods according to three segmentation methods, including equal time periods, time periods with equal number of purchases and time periods according to professional judgment. Explanatory variables including price, flight schedule (time of day, day of week, and months of year) and fare class preferences are examined. In terms of adjusted rho square, AIC value and log-likelihood statistics, the equal time segmentation performs best


بدون دیدگاه