منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله کنترل تطبیقی مد لغزشی فازی مبتنی بر B-Spline

عنوان فارسی
کنترل تطبیقی مد لغزشی فازی مبتنی بر B-Spline برای سیستم جرثقیل انبارداری خودکار
عنوان انگلیسی
Adaptive B-spline-based fuzzy sliding-mode control for an auto-warehousing crane system
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
15
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E297
رشته های مرتبط با این مقاله
مهندسی کامپیوتر و مدیریت
گرایش های مرتبط با این مقاله
مهندسی نرم افزار و مدیریت صنعتی
مجله
محاسبات ترم کاربردی - Applied Soft Computing
دانشگاه
آزمایشگاه های تحقیقاتی مکانیکی ، موسسه تحقیقات فناوری صنعتی، تایوان
کلمات کلیدی
کنترل تطبیقی، B-Spline به، کنترل فازی، قضیه لیاپانوف، کنترل مد لغزشی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


In this paper, an adaptive B-splined-based fuzzy sliding mode control (ABFSM) is presented to the application of auto-warehousing crane motion control. The ABFSM comprises an adaptive fuzzy identification controller (AFIC) and a B-spline-based compensation controller (BCC). The AFIC is designed to approximate the ideal controller of a crane system. To alleviate the load of fuzzy rule base construction, only the information from the sliding surface is used as the input of AFIC such that the conciseness and translucency of the control system can be upgraded. On the other hand, the BCC aims to compensate the approximation error of the AFIC. With the introduction of the B-spline function, the boundary of the approximation error can be represented by means of polynomial mapping. Thus, the design of the compensation controller can be achieved based on the characteristics of the B-spline function. In this paper, the objective of the ABFSM is to track the distance-speed reference trajectory of the crane control system. With the tuning law of the AFIC and the BCC, the stability can also be guaranteed by means of Lyapunov function. To validate the performance of the proposed approach, the ABFSM is applied to auto-warehousing crane motion control under various conditions for x, y, and z directions, respectively. From the simulation the advantages of the proposed ABFSM are demonstrated, where the capability to handle the uncertainty with efficiency is verified.

نتیجه گیری

5. Conclusions


In this paper, the ABFSM has successfully applied to the motion control of the auto-warehousing system. In the AFIC, the fuzzy logic inference is introduced to provide a means to approximate the ideal controller for the crane system when its dynamics are complex to be comprehended. To alleviate the burden of fuzzy rule construction, only the information from sliding surface is exploited as the input such that the conciseness and translucency of the control system can be upgraded. On the other hand, the BCC aims to compensate the approximation error of the AFIC. To achieve the efficient motion control, a distance–speed reference curve for each direction is designed before the beginning of control process according to the specifications of the crane system. Thus, a powerful yet easy-to-use methodology is given for online gain determination when optimal or sup-optimal fuzzy system is difficult to obtain. Two main contributions of the paper are 1) the stability of closed-loop adaptive fuzzy controller can be guaranteed by the means of Lyapunov function, and 2) using the concept of sliding-mode control and B-spline functions, the proposed ABFSM possesses the merit of being easily undertaken by a microprocessor. To validate the performance of the proposed approach, the ABFSM is applied to the auto-warehousing crane motion control under various loading conditions for x, y, and z directions, respectively. Through the simulation results and illustrations, the feasibility and the robustness of the proposed ABFSM are verified.


بدون دیدگاه