Abstract
This paper investigates the seismic performance of seawater sea-sand concrete (SSC) shear wall reinforced with glass fiber reinforced plastic (GFRP) bars. Three shear wall specimens were designed for the seismic performance evaluation, including natural aggregate concrete (NAC) reinforced with steel bars (SNW), NAC reinforced with GFRP bars (GNW) and SSC reinforced with GFRP bars (GSW). The results show that the application of SSC seems to have a negligible effect on the seismic performance of shear wall in the short term. The GNW and GSW have similar failure patterns and shapes of hysteresis curves. Also, with the same reinforcement ratio, the bearing capacity of GFRP reinforced specimens can be over 85% that of SNW while the deformability can reach the lateral drift up to 1/50. The ductility of GFRP reinforced specimen is lower than that of steel reinforced specimen but its residual deformation is relatively smaller. Furthermore, the applicability of existing design methods on the SSC shear wall is also evaluated.
1. Introduction
The conventional concrete is generally considered as unsustainable due to its massive consumption of natural resources and deterioration of the environment. According to the statistics [1], a numerous amount of raw materials was consumed in the past years due to the large-scale construction of concrete structures, which also led to substantial amount emissions of CO2 [2,3]. In particular, a severe contradiction between supply and demand of raw materials can be noticed in some regions lacking in natural resource [4], especially for those areas around the marine and coast. The construction of concrete structures in such areas relies heavily on the long-distance transport of gravel, river sand and even freshwater, which increase the cost and energy consumption overall. On the contrary, the resources of seawater and seasand are locally and abundant, so the application of seawater sea-sand concrete (SSC) is recommended for the marine and coastal projects [5].
4. Conclusions
This study is to evaluate the feasibility of using GFRP bars in seasand based concrete structures. Seismic behavior of the SSC shear wall reinforced with GFRP bars are investigated, and the results are promising concerning the applications of the seawater sea-sand concrete.
(1) The replacement of conventional concrete with seawater sea-sand concrete in shear walls has a little influence on the structural behavior in the short term (shell content of sea-sand is 2.31%). The GNW and GSW specimens have similar failure patterns and shape of hysteresis curves. Considering the scarcity of conventional raw materials for concrete, the SSC can be a satisfied alternative of conventional concrete in structures, but more researches on the long-term behavior should be conducted.