منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی بررسی پیش بینی ترافیک در شهرهای هوشمند - الزویر 2018

عنوان فارسی
بررسی پیش بینی ترافیک در شهرهای هوشمند
عنوان انگلیسی
Survey on traffic prediction in smart cities
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
31
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
نوع نگارش
مقالات مروری
رفرنس
دارد
پایگاه
اسکوپوس
کد محصول
E9289
رشته های مرتبط با این مقاله
مهندسی معماری، شهرسازی، فناوری اطلاعات
گرایش های مرتبط با این مقاله
طراحی شهری
مجله
محاسبات فراگیر و موبایل - Pervasive and Mobile Computing
دانشگاه
Department of Networked Systems and Services Budapest University of Technology and Economics Budapest - Hungary
کلمات کلیدی
پیش بینی جریان ترافیک، شهر هوشمند، مدل پیش بینی، حمل و نقل هوشمند
doi یا شناسه دیجیتال
https://doi.org/10.1016/j.pmcj.2018.07.004
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


The rapid development in machine learning and in the emergence of new data sources makes it possible to examine and predict traffic conditions in smart cities more accurately than ever. This can help to optimize the design and management of transport services in a future automated city. In this paper, we provide a detailed presentation of the traffic prediction methods for such intelligent cities, also giving an overview of the existing data sources and prediction models.

نتیجه گیری

5. Conclusions and Outlook


In our survey, we have studied different traffic flow prediction models in depth, motivated by their possible contribution to ATMS and ITS systems to forecast potential traffic conditions, thereby solving traffic 645 management problems in smart cities.


In Section 2, we examined currently available data sources used for traffic flow prediction. In our opinion, the enumerated data sources should be used together, because every data source has its own advantage. That way, one can achieve the best result by fusing them in an appropriate model.


Among fixed position sensors, the sensors able to scan more lanes at the same time (e.g., video image processors or laser radar sensors) could be more cost effective than other fixed position solutions. These can be used to implement crowd surveillance tasks in cities as well, so they could be the eyes of future smart cities due to their versatility and flexibility.


With moving sensors, we can identify exact paths, speeds, and moving patterns of vehicles and pedestrians, which can reveal direct connections between adjacent road segments. Moving sensors have minimal infrastructure cost compared to fixed position sensors, and they are important data sources in areas that are not covered by fixed position sensors.


بدون دیدگاه