منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی تعیین عدم قطعیت RCS با استفاده از ویژگی های انتخابی روش اعتبار سنجی - نشریه IEEE

عنوان فارسی
تعیین عدم قطعیت RCS با استفاده از ویژگی های انتخابی روش اعتبار سنجی
عنوان انگلیسی
RCS Uncertainty Quantification Using the Feature Selective Validation Method
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
8
سال انتشار
2018
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
رفرنس
دارد
کد محصول
E5659
رشته های مرتبط با این مقاله
مهندسی برق و فناوری اطلاعات و ارتباطات
گرایش های مرتبط با این مقاله
برق مخابرات و سوئیچ
مجله
یافته ها در زمینه سازگاری الکترومغناطیسی - Transactions on Electromagnetic Compatibility
دانشگاه
School of Electronic and Information Engineering - Beihang University - China
کلمات کلیدی
شبيه سازي داده ها، روش اعتبار سنجي انتخابي (FSV)، روش مونت کارلو (MC)، مقطع رادار (RCS)، اندازه گيري عدم قطعي (UQ)
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Uncertainty quantification is an important issue in the field of radar cross section (RCS) research. To quantify the impact of specific uncertainty factor on RCS, a novel approach based on the feature selective validation (FSV) method combined with Monte Carlo (MC) method is proposed in this paper. MC method is applied as the basic framework for uncertainty analysis, and FSV is initially employed to compare the results derived from sufficient uncertainty simulations. To facilitate and enhance the massive data assessment, a novel single and direct indicator of FSV is proposed as a quantitative descriptor of data uncertainty. The feasibility of the proposed method in RCS uncertainty quantification is benchmarked through many RCS evaluation examples. The impact of attitude uncertainty on the target RCS, including the scene of dynamic flight, is also studied by the proposed method.

نتیجه گیری

IV. CONCLUSION


This paper proposes a novel UQ approach for RCS data evaluation based on MC and FSV methods. The performance of the proposed method has been demonstrated by assessing the target RCS with different attitude disturbances. The data similarity XDMsim is developed as a new indicator of FSV to assess the massive data more conveniently and efficiently. The impact of attitude uncertainty on target RCS is also studied to further verify the effectiveness of proposed method.


As presented in this paper, the current approach still has some limitations to be considered as generally applicable. Many critical parameters are empirically obtained from massive RCS assessments and comparisons with the visual evaluation. The adaptive parameter adjustment achieved by machine learning might be a potential solution to extend the application area of the proposed method.


This paper aims at proposing a new perspective in RCS study considering the uncertainty interference. As a starting point of RCS UQ under the complicated electromagnetic environment, the topic and approach introduced in this paper are expected to attract more attention on the study about the radar target characteristics within more practical backgrounds.


بدون دیدگاه