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RCS Uncertainty Quantification Using the Feature
Selective Validation Method

Min Su, Dijun Liu, Ning Fang, and Baofa Wang

Abstract—Uncertainty quantification is an important issue in
the field of radar cross section (RCS) research. To quantify the
impact of specific uncertainty factor on RCS, a novel approach
based on the feature selective validation (FSV) method combined
with Monte Carlo (MC) method is proposed in this paper. MC
method is applied as the basic framework for uncertainty analy-
sis, and FSV is initially employed to compare the results derived
from sufficient uncertainty simulations. To facilitate and enhance
the massive data assessment, a novel single and direct indicator
of FSV is proposed as a quantitative descriptor of data uncer-
tainty. The feasibility of the proposed method in RCS uncertainty
quantification is benchmarked through many RCS evaluation ex-
amples. The impact of attitude uncertainty on the target RCS, in-
cluding the scene of dynamic flight, is also studied by the proposed
method.

Index Terms—Data similarity, feature selective validation (FSV)
method, Monte Carlo (MC) method, radar cross section (RCS),
uncertainty quantification (UQ).

I. INTRODUCTION

R ECENTLY, many practical problems with the uncertain
feature, referred as uncertainty quantification (UQ), have

received unprecedented attentions [1]. Due to the existence of
uncertainty, the radar cross section (RCS) data obtained from dy-
namic/static measurement or electromagnetic simulation always
have some mutual difference, which is even obvious sometimes.
This leads to the question about the reliability of the dynamic
targets’ RCS, which has also become a bottleneck in RCS
research. Therefore, the uncertainty issue is not only an in-
evitable problem but also a valuable study topic in this field.
Extensive efforts have been devoted to analyze and evaluate
RCS measurement uncertainty [2], [3]. However, in the mea-
surement process, results are often interfered by a variety of
factors simultaneously, such as attitude disturbance of dynamic
targets, system noise, frequency drift, environmental clutter, and
so on. It is difficult to extract the impact of one of the above-
mentioned uncertainties from the measurement data. Therefore,
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there is a great necessity to study the impact of the specific
uncertainty on RCS data by means of simulation.

The RCS simulation of complex target is a complicated com-
putational process which needs to take many practical factors
into account, such as sheltering, multiple scattering [4], and
so on. Such simulation systems are difficult to describe with
all-inclusive mathematical models. Hence, the reliability of the
dynamic RCS simulation has to be considered. A more feasi-
ble way of RCS UQ is the sampling-based statistical methods.
Monte Carlo (MC) method is considered to be one of the most
popular UQ methods [5], [6]. Its simplicity and nonintrusive
characters simplify the implementation by repeating uncertain
experiments and sample statistics with sufficient amounts. Al-
though the convergence efficiency of such method is relatively
low, it is widely used in the analysis of various complex electro-
magnetic problems because of its strong adaptability and less
constraint on conditions. These advantages of MC method make
it a good choice in UQ study, since it is a classical sampling-
based statistical approach, the comparison and evaluation of
numerical simulation data are critical for UQ.

Several data comparison methods are available in nowadays,
such as correlation and R-factor methods [7]. Generally, these
methods intend to quantify the difference of two datasets, and
provide an objective tool for engineers to validate data. How-
ever, they have intrinsic limitations and neither of them is flexi-
ble enough to adjust to the practical requirement. Beyond these
two, feature selective validation (FSV), as an innovative data
evaluation method developed recently, is first applied in elec-
tromagnetic compatibility area [8]. This method was originally
proposed by Martin [9] in 1999, and its fundamental was pre-
sented successively in the subsequent literatures [10]–[12]. FSV
provides a prototype of data validation, which has been adopted
by IEEE standard [13] accompanied with the relevant practical
guidance [14]. The descriptions and applications of this method
were also published in many literatures [15]–[18]. FSV method
analyzes the data in two aspects, including amplitude trend and
variation feature. The evaluation results could describe the de-
tailed data difference, and also provide the conclusion in natural
language rank form.

Although FSV method could offer abundant indicators and
information, huge assessment results will significantly increase
the processing burden especially for the RCS uncertainty study
under MC simulations. A scalar descriptor as the quantization of
validation result would be a better option for deeper analyses in
this situation, which also eases the implementation of massive
data assessments.
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To quantify the impact of specific uncertainty factor on target
RCS character, this paper presents a novel approach by com-
bining MC and FSV methods. Data similarity, served as the
validation output quantitatively representing the uncertainty,
is proposed to meet massive data assessments requirements.
Meanwhile, the RCS of complex target under different degrees
of attitude disturbance is applied to demonstrate the feasibility
and efficiency of the method.

The rest of this paper is organized as follows. Section II in-
troduces the methodology of RCS UQ, including FSV method,
the data similarity assessment based on FSV, and the UQ
framework combining MC and FSV. In Section III, the effec-
tiveness and feasibility of the proposed method are verified by
numerical examples of RCS, and the influence of attitude distur-
bance is further investigated. Section IV draws the conclusion.

II. METHODOLOGY

A. Feature Selective Validation Method

The preliminary stage of FSV evaluation is the data decom-
position into respective frequency bands. The point-by-point
comparisons between datasets are followed by using three in-
dicators including amplitude difference measure (ADM), fea-
ture difference measure (FDM), and global difference measure
(GDM). These indicators can be represented in point-by-point
type XDM(i) (XDM could be ADM, FDM, or GDM), or char-
acterized in confidence histogram form XDMc.

ADM indicates the difference on data amplitude and trend,
which could be calculated by the low-frequency component.
Since the overall magnitude of data is mainly considered in the
process of RCS assessment, the direct current (dc) component
cannot be ignored to avoid the bias of the assessment result.
In [15], offset difference measure, as the supplement of ADM,
is utilized to describe the difference on dc component. The
equation used to calculate the point-by-point ADM is as follows:

ADM (i) =
||Lo1 (i)| − |Lo2 (i)||

1
N

∑N
j=1 (|Lo1 (j)| + |Lo2 (j)|)

+
||dc1(i)|−|dc2(i)||

1
N

∑N
j=1(|dc1(j)|+|dc2(j)|)

·e
||dc1( i ) |−|dc2( i ) ||

1
N

∑N

j=1
( |dc1( j ) |+ |dc2( j )|)

(1)

where N is the length of compared data, and Lo denotes the
low-frequency component of data, and dc is the direct current
component.

FDM, reflecting the difference of variation feature for data,
is computed by adopting the derivatives of low-frequency and
high-frequency components:

FDM (i) = 2 |FDM1 (i) + FDM2 (i) + FDM3 (i)| (2)

FDM1 (i) =
|Lo′1 (i)| − |Lo′

2 (i)|
2
N

∑N
j=1 (|Lo′

1 (j)| + |Lo′
2 (j)|) (3)

FDM2 (i) =
|Hi′1 (i)| − |Hi′2 (i)|

6
N

∑N
j=1 (|Hi′1 (j)| + |Hi′2 (j)|) (4)

TABLE I
FSV INTERPRETATION SCALE

FSV value XDM(i) FSV Interpretation

Less than 0.1 Excellent
Between 0.1 and 0.2 Very Good
Between 0.2 and 0.4 Good
Between 0.4 and 0.8 Fair
Between 0.8 and 1.6 Poor
Greater than 1.6 Very Poor

FDM3 (i) =
|Hi′′1 (i)| − |Hi′′2 (i)|

7.2
N

∑N
j=1 (|Hi′′1 (j)| + |Hi′′2 (j)|) (5)

where Hi is the high-frequency component of data, Hi′ and Hi′′

denote the first and second derivatives of Hi, and Lo′ is the first
derivative of the Lo component.

Combining ADM and FDM, the GDM term with weights can
be defined as

GDM (i) =
√

WA · ADM(i)2 + WF · FDM(i)2 (6)

where WA and WF are weighting factors of ADM and FDM.
Owing to the electromagnetic scattering physics in optical

region, the dynamic radar data are sensitive to the attitudes. So
the high attitude sensitivity leads to the dynamic of RCS data
change rapidly. The minor attitude disturbances may result in
apparent difference of data distribution. Thus, in the process
of RCS data comparison, FDM tends to get worse result than
ADM, and GDM merely reflects FDM results while ignoring
the ADM.

According to (6), the original GDM formula mainly empha-
sizes on the largest value, which may overestimate the GDM
term. For RCS data, a good ADM (small value) is easily over-
whelmed by the poor FDM (large value), which makes ADM
contribute little in GDM term. Only using FDM in assessment
evaluation is not a prior choice, since the overall tendency of
data also cannot be neglected.

One possible solution to the aforementioned problem is the
modification of weighing factor, which is achieved by limiting
the sum of the weights to one in case of ADM or FDM being
neglected. Thus, (6) can be expressed as

GDM (i) =

√

WA · ADM(i)2 + WF · FDM(i)2

WA + WF
. (7)

Utilizing the calculated XDM(i), we can derive the average
value as

XDMavg =
1
N

N∑

i=1

XDM (i). (8)

According to the above-mentioned point-by-point result
[XDM(i)], a more intuitive hierarchical description XDMc can
be obtained by using histogram statistics under certain map-
ping rules. As listed in Table I [11], the evaluated results are
ranked into six levels according to the FSV mapping rule, which
corresponds to the natural language description as “excellent,”
“very good,” “good,” “fair,” “poor,” and “very poor.”



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SU et al.: RCS UNCERTAINTY QUANTIFICATION USING THE FEATURE SELECTIVE VALIDATION METHOD 3

In brief, FSV provides an objective and comprehensive tool
for data comparison. It gives not only the point-by-point results
[XDM(i)] describing the partial difference, but also the natural
language ranked results (XDMc) as the overall descriptor. This
might extend the application scenario of FSV. In the following
sections, FSV is applied to compare the RCS data with intensive
fluctuations.

B. Data Similarity

To further investigate the RCS uncertainty, multiple measure-
ments or simulations are needed with corresponding statistical
study of FSV evaluation results. For MC simulation, statistics of
multiple comparisons with respect to a reference should be taken
to analyze the performance of specific model or parameters. The
mean value XDMavg is a single scalar which is relatively abstract
and incomprehensible. Though the confidence histogram XDMc
could be readily understood, but it may not be suitable for com-
parison in many situations such as the dispersive distribution of
the histogram. For this reason, a quantified indicator, similarity,
is introduced to describe the data validation, which should take
advantages from both XDMavg and XDMc. In other words, the
similarity should be able to easily interpret the performance of
the results.

According to confidence histogram XDMc, data similarity
XDMsim can be derived as

XDMsim =
6∑

r=1

P (r) S (r) (9)

where r is validation rank, and P (r) is the probability of each
rank representing the histogram values. S(r) is the similarity of
each rank.

IEEE standard describes the validation rating scale (VRS)
method, which allows visual comparisons between any two
datasets [13]. It explains each rank in visual comparisons.
Through a large number of RCS data evaluations and the con-
clusions from visual assessments, further definitions of these
interpretations are developed for the RCS validation situa-
tion. For example, “excellent” means “perfect or almost per-
fect match,” which could be explained as “100% area of data
matches.” “Very good” means “minor variations allowable,” and
visually “nearly 90% area has agreement.” “Good” means “gen-
erally good agreement across the data,” which means “nearly
75% area has agreement” for RCS data. “Fair” corresponds to
“reasonable agreement over many portions of the data,” and vi-
sually “nearly 60% area has agreement” for RCS data. “Poor”
could be explained as “minor agreement” in VRS, and ought to
be “nearly 30% area agreement.” Finally, the “very poor” could
be considered as “virtually no discernable agreement,” and it
also means “nearly 0% area has agreement.”

According to the above-mentioned discussions, the mapping
scale of nature language rank and its corresponding similarity
are introduced in Table II. For special RCS data evaluation,
the similarity means “how many areas with agreement.” It is
reasonable that the similarity of “excellent” is defined as 100%,
while “very poor” corresponds to 0%. “Fair” has the meaning of

TABLE II
SIMILARITY MAPPING RELATION

Rank r FSV Interpretation Similarity S(r)

1 Excellent 100%
2 Very Good 90%
3 Good 75%
4 Fair 60%
5 Poor 30%
6 Very Poor 0%

Fig. 1. Framework for uncertainty quantification using the MC method.

qualified, and its similarity is 60%. The similarities of remaining
ranks are also defined in Table II.

It should be noted that the similarity mapping S(r) in Table II
is completely determined by the operating personnel based on
the actual situation. It has a strong operability, and can be flexibly
adjusted according to practical application process.

C. Uncertainty Quantification Based on the Monte Carlo
Method

As the prerequisite to quantify the impact of the specific un-
certainty on RCS data, MC simulation method is adopted as
the basic framework of RCS UQ. It models the input param-
eters of the system as random (or pseudo-random) variables,
and obtains the deterministic description of the system response
through a large number of simulations. Such method is appli-
cable to black box systems which are difficult to be described
with deterministic mathematical models and uncertain input pa-
rameters. The target electromagnetic scattering characteristics
under uncertainty interference could be considered as this kind
of black box. In this paper, we establish a stochastic model to
describe the uncertainty and calculate the macroscopic statistics
(mean and variance) through the MC simulation method. The
influence of uncertain factor on target RCS could be analyzed.
The main framework for UQ based on MC is shown in Fig. 1.

As described in Fig. 1, reference data are acquired using simu-
lation model without the interference of random parameters. Un-
certain factors such as attitude disturbance of the target, system
noise, frequency drift, environmental clutter, etc., are selected
and modeled according to the research requirements. Based
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Fig. 2. Geometric model of generic missile.

on these preliminary works, massive electromagnetic simula-
tions are carried out and many experimental data affected by
uncertainty are obtained. Since the FSV is a one-to-one data
comparison method, these data are also compared with refer-
ence data one by one. Thus, the similarities of each data to the
reference are derived. Finally, the data similarity is obtained
through the statistical analyses (usually the mean value), which
characterizes the influence of the current uncertainty factor on
target RCS.

Based on the above-mentioned idea, the impact of various
uncertainty interferences on RCS is analyzed by changing the
parameters of random variables, such as amplitude of the target
attitude disturbance. Meanwhile, we change the fixed variables
to investigate the effects of same uncertainty factor such as the
frequency of incident waves under different conditions.

III. EXAMPLES AND APPLICATIONS

A. RCS Assessment Using FSV

In order to illustrate the performance of FSV in RCS eval-
uation, datasets from a generic missile model are utilized in
this part, which can be seen as a representative of the complex
target. The missile model is similar to the one in [19], with a
length of 0.9906 m and a wingspan of 0.635 m, as illustrated
in Fig. 2. Assume that a vertical polarized wave with radar fre-
quency 10 GHz is incident to target. The azimuth θ = 0◦ means
that the radar wave incidents on the nose of the missile, while
θ = 180◦ denotes the wave incidence to the tail. In this paper,
backscattering RCS was calculated by applying the theory of
physical optics and the physical theory of diffraction. In Fig. 3,
solid line shows backscattering RCS of missile with azimuth
from 0° to 180°, the sampling interval is 0.5°, while pitch and
roll angles of target are all equal to 0°.

In practical measurements and engineering applications, tar-
get attitude uncertainty is ubiquitous and un-neglectable. Since
the attitude uncertainty leads to different results in subsequent
procedures, learning its influence on RCS is of great signif-
icance. Generally, an effective way is to analyze similarity
between the RCS data with and without the attitude uncer-
tainty. Namely, we can compare the data containing attitude
disturbance with the reference data without disturbance.

To simplify the attitude uncertainty model, the Gaussian ran-
dom model is added to the original attitude sequence as distur-
bance interference. Then, the corresponding RCS data can be

Fig. 3. RCS data of the generic missile model.

Fig. 4. ADM results of generic missile RCS evaluation from FSV.

calculated. One of the simulation results with the mean attitude
disturbance of 0° and standard deviation of 0.5° is shown as the
dashed line in Fig. 3.

As depicted in Fig. 3, the RCS difference is not very obvious
from subjective judgment. Such difference is mainly caused
by the small quantity of attitude disturbance. Therefore, when
engineers performing visual assessment on such data, they tend
to conclude the high data similarity, and the assessment result
is probably “excellent” or “very good.” Visually, the majority
(nearly 90%) of data area reflect good matches in amplitudes.
From the variation feature view point, some points within 20°
and 80° indicate disagreement. Therefore, it is considered that
almost 75% of the regions are similar.

The quantitative evaluation of data is performed by using
the FSV method. The confident histogram ADMc is shown
in Fig. 4, with little difference in data magnitude and trend.
The assessment result is mainly concentrated within “excellent,”
which is basically consistent with visual comparison. The ADM
similarity is 94.71% with good consistency compared with the
visual result of 90%.

Fig. 5 shows the FDM results. FSV could discover the sub-
jective imperceptible differences on data variation feature. Un-
der certain attitudes, particularly in the region where the data
changes larger and faster (between 30° and 90° in this case),
two datasets have more obvious differences. This phenomenon
is caused by the higher RCS attitude sensitivity on the broadside
of the missile model. In this region, small changes of attitude
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Fig. 5. FDM results of generic missile RCS evaluation from FSV.

Fig. 6. GDM results of generic missile RCS evaluation from FSV according
to (6).

would cause large RCS variations, thus leading to FDM “worse”
than ADM. This indicates that FDM results are in line with the
law of RCS, and it is beneficial for RCS data assessment. The
FDMsim result of 74.72% has a good agreement with visual
evaluation of 75%. This also proves the effectiveness of the
definition of S(r) in Table II for RCS data assessment.

According to (6) with weighting factors all equal to one,
GDM results are obtained as shown in Fig. 6. For comprehensive
consideration, GDM is taken as the ultimate result of RCS data
assessment. In this instance, the same weight factor leads to
that the GDM values are preciously showing no difference with
FDM, and the effect of ADM is seemingly neglected. So the
current weight setting makes the RCS data validation not agree
with the true feature.

Fig. 7 shows the GDM results of Fig. 3 from (7) with all
weighting factors equal to one. Compared with the results in
Fig. 6, the probabilities of “excellent” and “very good” have
increased significantly, while the rest are reduced. The GDM
result is optimized and is between the result of FDM and ADM.
This illustrates that the GDM from (7) ensures a balance between
ADM and FDM without ignoring any of them.

Therefore, according to (9), the similarity of example in Fig. 3
could be obtained and listed in Table III. The high similarity of
94.71% on amplitude trends is observed, with a low similarity
of 74.72% on variation feature. The GDMsim by (6) is 73.19%
which similar to the FDM, and it seems to neglect the ADM
part. By (7), the total similarity is 80.24% with all weight equal
to one. The similarity results also demonstrate the effectiveness
of the weight adjustment from (7).

Fig. 7. GDM results of generic missile RCS evaluation from FSV according
to (7).

TABLE III
DATA SIMILARITY OF FIG. 3

XDM XDMavg XDMsim

ADM 0.098 94.71%
FDM 0.357 74.72%
GDM by (6) 0.378 73.19%
GDM by (7) 0.267 80.24%

Fig. 8. RCS correlation coefficients in different attitude disturbances in
10 GHz.

B. Influence of Attitude Disturbance on RCS

In this part, the influences of attitude uncertainty on the mis-
sile RCS are analyzed by evaluating massive simulation data.
We add random attitude disturbance to target’s attitude sequence
for simulate attitude uncertainty in the above-mentioned mis-
sile target. MC simulation is performed under each disturbance
amplitude with the increase of 0.1°. RCS data from the atti-
tude disturbance are compared with the reference one without
disturbance.

To verify the accuracy of proposed approach, correlation coef-
ficient is applied for the data comparison first. The RCS correla-
tion coefficients with varying attitude disturbances ranging from
0.1° to 2° are shown in Fig. 8. Obviously, the data correlation
coefficient decreases with the increment of attitude disturbance
amplitude.

For the proposed method, data similarities under each distur-
bance amplitude are obtained from the FSV method. The mean
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Fig. 9. XDMavg in different attitude disturbances in 10 GHz.

Fig. 10. RCS similarities in different attitude disturbances in 10 GHz.

value of data similarities in each disturbance amplitude is chosen
to describe the influence of attitude disturbance on RCS. Figs. 9
and 10 show the XDMavg and data similarities with varying
attitude disturbances ranging from 0.1° to 2° correspondingly.

As can be seen, the data similarity decreases with the increase
of attitude disturbance magnitude. Apparently, the result reflects
the good consistency with the correlation coefficient, which
proves the reasonability of the proposed method.

In addition, more information can be mined from the FSV
results. The reduction rate of ADMsim approximates to a con-
stant when the disturbance amplitude is within specific scope.
The similarity reduces about 2% by each 0.1° more attitude
disturbance. The FDM similarities are lower than those of ADM,
and the global similarity GDMsim is closer to the FDM similar-
ity. It means that the RCS variation feature is more affected
by the attitude disturbance, and it plays a dominant role in the
assessment.

Figs. 9 and 10 show that both XDMavg and XDMsim re-
veal the same principle of RCS uncertainty. As described in
Section II-B, the mean value XDMavg is a single scalar which
is relatively abstract and incomprehensible, especially for mas-
sive data comparison. The XDMsim combines the advantages of
XDMavg and XDMc, which is easy for both statistical analysis

Fig. 11. RCS similarities over attitude disturbances.

Fig. 12. RCS similarities over different frequencies.

and understanding. Thus, it would be more suitable for massive
RCS data processing.

Fig. 11 shows the trends of RCS similarities (take the GDM
similarity as the ultimate result) with different attitude distur-
bances. Obviously, the degree of data similarity decreases with
raising attitude disturbance. Higher uncertainty of the RCS data
has been explored in all listed frequencies with similarity re-
duction. It can also be seen that the similarity curve reflects the
negative correlation relationship with the frequency.

Fig. 12 presents the trends of RCS similarities over different
frequencies under specific disturbance amplitude. The global
similarity of RCS becomes lower with the increment of fre-
quency. This comes from the higher attitude sensitivity of radar
target RCS under higher frequency. Hence, for the missile tar-
get introduced in Fig. 2, the effect of attitude disturbance is
essentially proportional to the electrical size of the target.

C. RCS Uncertainty Quantification of Dynamic Simulation

To demonstrate the practicality of the method, RCS datasets
from dynamic flight simulation are utilized. As shown in Fig. 13,
the missile moves along the straight line from the starting point
(10 000, 10 000, 0) to the point (–12 000, 13 000, 5000) with
the unit of meter. The radar is located at the origin (0, 0, 0).
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Fig. 13. Flight track of dynamic simulation.

Fig. 14. RCS of dynamic simulation scene.

Fig. 15. RCS similarities over attitude disturbances in dynamic simulation.

There are 1024 even sampling points within a flight simulation.
The RCS simulation results are shown in Fig. 14. The solid line
shows backscattering RCS of missile in a flight process. We
add random attitude disturbance model in the original dynamic
target attitude series to simulate attitude uncertainty in the flight
process. Simulation results with mean attitude disturbance of 0°
and standard deviation of 0.5° are shown as the dashed line.

MC simulation with attitude disturbance is performed mas-
sively for this dynamic flight scene. RCS similarities are eval-
uated from the FSV method. The mean value of data similari-
ties in each disturbance is chosen to describe the influence of

attitude disturbance on RCS. Fig. 15 shows the data similarities
with varying attitude disturbances ranging from 0.1° to 2°. As
can be seen, the data similarity decreases with the increase of
attitude disturbance magnitude, which is also consistent with
the previous results.

The above-mentioned results also indicate that XDMsim is
more intuitive and informative in massive data evaluation, and
the corresponding conclusions have more practical significance.
The uncertainty analysis results from the proposed method also
reflect the high consistency with the expectation according to the
principal of electromagnetic theory. Meanwhile, the example of
dynamic simulation again illustrates the practical significance
of the proposed method.

IV. CONCLUSION

This paper proposes a novel UQ approach for RCS data eval-
uation based on MC and FSV methods. The performance of
the proposed method has been demonstrated by assessing the
target RCS with different attitude disturbances. The data simi-
larity XDMsim is developed as a new indicator of FSV to assess
the massive data more conveniently and efficiently. The impact
of attitude uncertainty on target RCS is also studied to further
verify the effectiveness of proposed method.

As presented in this paper, the current approach still has
some limitations to be considered as generally applicable. Many
critical parameters are empirically obtained from massive RCS
assessments and comparisons with the visual evaluation. The
adaptive parameter adjustment achieved by machine learning
might be a potential solution to extend the application area of
the proposed method.

This paper aims at proposing a new perspective in RCS study
considering the uncertainty interference. As a starting point of
RCS UQ under the complicated electromagnetic environment,
the topic and approach introduced in this paper are expected
to attract more attention on the study about the radar target
characteristics within more practical backgrounds.
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