Abstract
With the advent of Internet of Health (IoH) age, traditional medical or healthy services are gradually migrating to the Web or Internet and have been producing a considerable amount of medical data associated with patients, doctors, medicine, medical infrastructure and so on. Effective fusion and analyses of these IoH data are of positive significances for the scientific disaster diagnosis and medical care services. However, IoH data are often distributed across different departments and contain partial user privacy. Therefore, it is often a challenging task to effectively integrate or mine the sensitive IoH data, during which user privacy is not disclosed. To overcome the above difficulty, we put forward a novel multi-source medical data integration and mining solution for better healthcare services, named PDFM (Privacy-free Data Fusion and Mining). Through PDFM, we can search for similar medical records in a time-efficient and privacy-preserving manner, so as to offer patients with better medical and health services. A group of experiments are enacted and implemented to demonstrate the feasibility of the proposal in this work.
I. INTRODUCTION
With the ever-increasing popularity of Information Technology and the gradual adoption of digital software in medical or healthy domains, various medical departments or agencies have accumulated a considerable amount of historical data (e.g., patients’ medical records, healthy treatment solutions and so on), which form a main source of big Internet of Health (IoH) data [1]. The utilization degree of such IoH data is a key criterion to evaluate and quantify the information level of medical or healthy units or departments [2].
VI. CONCLUSION
Effective fusion and analyses of IoH data are of positive significances for scientific disaster diagnosis and medical care services. However, the IoH data produced by patients are often distributed across different departments and contain partial patient privacy. Therefore, it is often a challenging task to effectively integrate or mine the sensitive IoH data without disclosing patient privacy. To tackle this challenge, we bring forth a novel multi-source medical data integration and mining solution for better healthcare services, named PDFM. Through PDFM, we can search for similar medical records in a time-efficient and privacy-preserving manner, so as to provision patients with better medical and health services. The experiments on a real dataset prove the feasibility of PDFM.