دانلود رایگان مقاله انگلیسی اعتبار سنجی داده های مواد و محاسبه با یک شبکه عصبی مصنوعی - الزویر 2018

عنوان فارسی
اعتبار سنجی داده های مواد و محاسبه با یک شبکه عصبی مصنوعی
عنوان انگلیسی
Materials data validation and imputation with an artificial neural network
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
10
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E8154
رشته های مرتبط با این مقاله
مهندسی مواد، فناوری اطلاعات
گرایش های مرتبط با این مقاله
شبکه های کامپیوتری
مجله
علوم مواد محاسباتی - Computational Materials Science
دانشگاه
University of Cambridge - J.J. Thomson Avenue - Cambridge CB3 0HE - United Kingdom
کلمات کلیدی
داده های مواد، شبکه عصبی، آلیاژها، پلیمرها
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

abstract


We apply an artificial neural network to model and verify material properties. The neural network algorithm has a unique capability to handle incomplete data sets in both training and predicting, so it can regard properties as inputs allowing it to exploit both composition-property and propertyproperty correlations to enhance the quality of predictions, and can also handle a graphical data as a single entity. The framework is tested with different validation schemes, and then applied to materials case studies of alloys and polymers. The algorithm found twenty errors in a commercial materials database that were confirmed against primary data sources.

نتیجه گیری

5. Conclusions


We developed an artificial intelligence algorithm and extended it to handle incomplete data, functional data, and to quantify the accuracy of data. We validated its performance for model data to confirm that the framework delivers the expected results in tests on the error-prediction, incomplete data, and graphing capabilities. Finally, we applied the framework to the real-life MaterialUniverse and Prospector Plastics databases, and were able to showcase the immense utility of the approach.


In particular, we were able to propose and verify erroneous entries, provide improvements in extrapolations to give estimates for unknowns, impute missing data on materials composition and fabrication, and also help the characterization of materials by identifying non-obvious descriptors across a broad range of different applications. Therefore, we were able to show how artificial intelligence algorithms can contribute significantly to innovation in researching, designing, and selecting materials for industrial applications.


The authors thank Bryce Conduit, Patrick Coulter, Richard Gibbens, Alfred Ireland, Victor Kouzmanov, Hauke Neitzel, Diego Oliveira Sánchez, and Howard Stone for useful discussions, and acknowledge the financial support of the EPSRC [EP/J017639/1] and the Royal Society. There is Open Access to this paper and data available at https://www.openaccess.cam.ac.uk.


بدون دیدگاه