ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
Abstract
Tuberculosis meningitis (TBM) is a prevalent form of extra-pulmonary tuberculosis that causes substantial morbidity and mortality. Diagnosis of TBM is difficult because of the limited sensitivity of existing laboratory techniques. A metabolomics approach can be used to investigate the sets of metabolites of both bacteria and host, and has been used to clarify the mechanisms underlying disease development, and identify metabolic changes, leadings to improved methods for diagnosis, treatment, and prognostication. Mass spectrometry (MS) is a major analysis platform used in metabolomics, and MS-based metabolomics provides wide metabolite coverage, because of its high sensitivity, and is useful for the investigation of Mycobacterium tuberculosis (Mtb) and related diseases. It has been used to investigate TBM diagnosis; however, the processes involved in the MS-based metabolomics approach are complex and flexible, and often consist of several steps, and small changes in the methods used can have a huge impact on the final results. Here, the process of MS-based metabolomics is summarized and its applications in Mtb and Mtb-related diseases discussed. Moreover, the current status of TBM metabolomics is described.
Conclusions
Current diagnostic approaches are limited by their speed, sensitivity, and specificity of detection. There remains a need for novel biomarkers to improve the diagnosis of TBM. Although the initial application of MS-based metabolomics research focused on TBM-related basic research, such as metabolic network and enzyme activity, MS-based metabolomics is a promising approach for identification of metabolic markers of TBM. Its sensitivity may allow superior biomarker screening, compared with NMR-based metabolomics; however, the field is still in the early stages of establishment. The limited results to date demonstrate the great potential of TBM for diagnostic application, and MS-based metabolomics is expected to provide additional diagnostic information in the future.