Abstract
High-speed electrified rail transit (HSERT) has been developed intensely worldwide. However, the reinforced concrete infrastructure (RCI), especially for the deck of viaducts, has the risk of stray current (SC) induced corrosion. The present research is dedicated to revealing the mechanism of low-frequency SC (LSC) induced corrosion and providing a scientific basis to ensure serviceability, sustainability and cycle-life performance design of RCI. Considering the spatial distribution and time consumption of oxygen as well as pore saturation of RCI, the mathematical model of LSC induced corrosion is established. Based on the fluctuations of oxygen concentration, the quasi-steady state is proposed. And the corrosion behaviors of RCI with different pore saturation subjected to LSC are compared systematically. The results of mathematical model are verified by the measurement of half-cell potential.
1. Introduction
The rapid development of the high-speed electrified rail transit (HSERT) meets the strategic requirements of energy conservation, environmental protection and sustainable development, which has gradually become one of the most vital modes of transportation for individuals. The reinforced concrete infrastructures (RCI), especially for the viaducts, play a significant role in the safety of HSERT. However, corrosion induced by stray current (SC) from HSERT seriously affecting the durability of RCI[2].
5. Conclusion
The SC has become a potential hazard deteriorates the durability of RCI due to the rapid development of HSERT. The present research is dedicated to revealing the corrosion mechanism of SC and providing basis for subsequent researches (including the evaluation of serviceability, sustainability and cycle-life performance design of RCI as well as the optimization of corrosion protection system). On the one hand, the LSC which is closer to the actual project is adopted; on the other hand, the spatial distribution and time consumption of oxygen concentration (as the crucial depolarizer for cathode process) as well as the pore saturation of the mortar are considered in FEM.