دانلود رایگان مقاله حساسیت مدل آسایش حرارتی PMV و استفاده از دستگاه های پوشیدنی

عنوان فارسی
مطالعه حساسیت برای مدل آسایش حرارتی PMV و استفاده از دستگاه های پوشیدنی داده های بیومتریک برای برآورد میزان سوخت و ساز
عنوان انگلیسی
Sensitivity study for the PMV thermal comfort model and the use of wearable devices biometric data for metabolic rate estimation
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
11
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E1252
رشته های مرتبط با این مقاله
مهندسی مکانیک و مهندسی عمران
گرایش های مرتبط با این مقاله
سیستم های حرارتی برودتی، مدیریت ساخت و سازه
مجله
ساختمان و محیط - Building and Environment
دانشگاه
دانشگاه نبراسکا - لینکلن، گروه مهندسی معماری، اوماها، ایالات متحده آمریکا
کلمات کلیدی
مدل راحتی شخصی، PMV، دستگاه پوشیدنی، سوخت وساز
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


This paper studies the sensitivity of the Predicted Mean Vote (PMV) thermal comfort model relative to its environmental and personal parameters of a group of people in a space. PMV model equations, adapted in ASHRAE Standard 55eThermal Environmental Conditions for Human Occupancy, are used in this investigation to conduct parametric study by generating and analyzing multi-dimensional comfort zone plots. It is found that personal parameters such as metabolic rate and clothing have the highest impact. However, as these parameters are difficult to estimate or measure, they are usually assumed to be default values (rest conditions and light clothing). In this work, we show the application of the human-in-theloop sensor data of wearable devices to provide a continuous feedback for the averaged metabolism value of building occupants to be used in the PMV calculation. Moreover, we motivate the use of these sensor data to develop a new personalized comfort model.

نتیجه گیری

5. Future work


Because the PMV model relies on steady state heat equations, it cannot be used for transient comfort computation. This further limits the use of this model. Due to the obvious limitations of the PMV model, future plans are to investigate the development of a personalized comfort model based on biometric data from wearable devices and other environment conditions such as ambient temperature and humidity. A user interface application to receive an occupant's Microsoft Smart Band 2™ biometric data and his direct feedback on comfort conditions is developed and is shown in Fig. 10. The Microsoft Smart Band 2™ was chosen due to its high accuracy and the abundance of its biometric sensors (i.e. skin temperature sensor, heart rate sensor, metabolic rate sensor, and skin resistance sensor). Fig. 11 (a) shows sample of the app collected data for an occupant. In our current study, five students were given the Microsoft Band along with the HOBO MA1101 data logger to measure temperature and relative humidity


بدون دیدگاه