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a b s t r a c t

This paper studies the sensitivity of the Predicted Mean Vote (PMV) thermal comfort model relative to its
environmental and personal parameters of a group of people in a space. PMV model equations, adapted
in ASHRAE Standard 55eThermal Environmental Conditions for Human Occupancy, are used in this
investigation to conduct parametric study by generating and analyzing multi-dimensional comfort zone
plots. It is found that personal parameters such as metabolic rate and clothing have the highest impact.
However, as these parameters are difficult to estimate or measure, they are usually assumed to be default
values (rest conditions and light clothing). In this work, we show the application of the human-in-the-
loop sensor data of wearable devices to provide a continuous feedback for the averaged metabolism
value of building occupants to be used in the PMV calculation. Moreover, we motivate the use of these
sensor data to develop a new personalized comfort model.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Achieving higher performance at work is of high interest.
Thermal comfort that is strongly related to productivity has
recently received a great deal of attention. Thermal comfort is a
subjective matter and may vary from person to person. There have
been multiple attempts to develop a unified and widely accepted
thermal comfort model that can be received and adopted by large
audiences. The most popular model is the Predicted Mean Vote
model (PMV model), which was constructed by P. O. Fanger [1] and
was later adapted into the American Society of Heating, Refriger-
ating, and Air-Conditioning Engineers (ASHRAE) Standard
55eThermal Environmental Conditions for Human Occupancy. This
model meant to estimate the “average” thermal sensation that a
group of people would report when occupying a given space. For
that matter it correlates multiple environmental parameters (air
temperature, air velocity, relative humidity, and radiant tempera-
ture) and the average of personal parameters of group of people
(metabolism and clothing) to different levels of comfort based on a
rating between �3 and 3, where �3 means the body thermal
sensation is very cold and 3 means the body thermal sensation is
very hot. Typically, the goal is to control environmental factors in
order to keep the PMV value between�0.5 and 0.5, where the body
is believed to be thermally satisfied. Since the environmental pa-
rameters are relatively easy to measure, they have received a great
deal of attention in the literature. Personal parameters, on the other
hand, are more difficult to estimate or measure and, therefore, are
usually assumed to be constant default values for a group of people
(e.g. rest condition [2e5] and summer clothing [2,3,6]), thus
missing the opportunity to accommodate comfort variation due to
clothing and metabolism. Multiple tables were created to map the
metabolic rate and clothing conditions based on occupants activity
level and clothing styles [7,8], however, as most buildings don't
include any measurement feedback loop from the occupants, one
level of activity (metabolism) and one clothing insulation of the
occupants is assumed.

Much recent work has adapted variable metabolic rate in the
PMV calculation. For example, in Ref. [9] the metabolic rate was
accurately measured using the medical Vmax encore™ station. It
was shown that the metabolic rate of an occupant would change at
different ambient temperatures without any change in activity.
Ref. [10] studied the effect of thermal, visual, and acoustic factors on
the overall comfort. In their case study, the metabolic rate and
clothing values were considered by observation and in reference to
metabolic rate and clothing tables. High cost and relying on human
observations and surveys may limit the use of these methods to
estimate metabolism in real time. In this work, we show the use of
wearable devices data to provide a continuous feedback of
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occupants' metabolism value.
The PMV value can be directly calculated using a system of

highly nonlinear and iterative equations, which were later adapted
in the ASHRAE Standard 55 [8]:

PMV ¼
�
0:028þ 0:3033e�0:036M

�
� L (1)

L ¼ ðM �WÞ � 3:05� 10�3ð5733� 6:99ðM �WÞ � PaÞ
� 0:42ðM �W � 58:15Þ � 1:7� 10�5ð5867� PaÞ
� 0:0014Mð34� taÞ � fclhcðtcl � taÞ � 3:96

� 10�8fcl
h
ðtcl þ 273Þ4 � �

tr þ 273
�4i (2)

where L defines the overall heat transfer around a single occupant
inW/m2, M is the metabolic rate inW/m2, W is the work emitted by
the occupant inW/m2, Pa is thewater vapor pressure, tr is themean
radiant temperature in �C, ta is the air temperature in �C, fcl is the
clothing insulation factor defined as the percentage of the total
body surface area covered by clothing, Icl is the clothing insulation
in CLO and hc is the convective rate heat transfer coefficient in W/
m2 K given by:

hc ¼
(
2:38ðtcl � taÞ0:25; if 2:38ðtcl � taÞ0:25 >12:1

ffiffiffiffi
V

p

12:1
ffiffiffiffi
V

p
; if 2:38ðtcl � taÞ0:25 >12:1

ffiffiffiffi
V

p (3)

where V is the air velocity in ms�1, and tcl is the clothing temper-
ature in �C, which can be calculated based on the conditions of the
body using the following simple heat balance equation:

tcl ¼ 35:7� 0:028ðM �WÞ � 0:155Icl
n
3:96� 10�8

� fcl
h
ðtcl þ 273Þ4 þ �

tr þ 273
�4iþ fcl � hcðtcl � taÞ

o
(4)

A heat balance approach is adapted in the PMV model to infer
human thermal comfort [1]. For example, Equations (1) and (2)
were obtained by balancing the following heat modes: (1) heat
generation due to metabolism (M � W), (2) heat transfer by con-
vection 0.0014M(34 � ta), (3) heat transfer through the skin
3.05 � 10�3(5733 � 6.99 (M � W) � Pa), (4) heat transfer through
latent respiration 1.7 � 10�5(5867 � Pa), (5) heat transfer by dry
respiration 0.0014M(34 � ta), and (6) heat transfer by radiation

3:96� 10�8fcl½ðtcl þ 273Þ4 � ðtr þ 273Þ4�. Also in equation (2),
clothing temperature is estimated based on the heat generated by
metabolism and heat transfer by way of convection and radiation.
To solve for the clothing temperature tcl in equation (4), ASHRAE
incorporated an iterative process to continuously update the
clothing temperature until the difference between the current and
previous iteration is within a predefined margin.

Evaluating PMV equations is computationally intensive and re-
quires iterative processes. Hence, many approximations were
made. For example, in Ref. [3], an artificial neural network (ANN)
model was employed to capture the dynamics of the PMV model
equations and then use them to evaluate the PMV value for any
given thermal parameters set. Also, Zhang and You [11] introduced
a sequential approximation to nonlinear equations, not only to
simplify the calculation but also to find the “air temperature,
relative humidity” pair that leads to maximum energy savings
(inverse problem solution).

Most human comfort researchwork has focused on studying the
comfort effect of air temperature, which is widely accepted as the
most important parameter in thermal comfort models, coupled
with a few other environmental factors, such as air velocity and
relative humidity [8]. Less work has dealt with the effects of
comfort and sensitivity to metabolism and clothing, which are
personal parameters. This may reflect the fact that personal pa-
rameters are underestimated, or difficult to quantify and measure.
In fact, metabolism and clothing thermal resistance play a vital role
in defining the optimal thermal comfort conditions. While meta-
bolism increases the rate of heat generation in the human body and
decreases the desirable comfort temperature, clothing helps to
tolerate colder conditions. Assuming clothing andmetabolism to be
constant values may lead to a false PMV calculation.

Focus in this paper will be given to metabolism and its direct
effect on the PMVmodel. MET is the unit of metabolism in the PMV
model. A singleMET is equivalent to the heat a body produces while
it inhales 3.5 ml of oxygen (O2) per kg of weight each hour (H);

(ml O2
Kg: H) [12]. Also, MET can be thought of as multiples of the resting

metabolic rate for the occupant while he or she is engaged in a
physical (or mental) activity [13]. Accurate measurement of meta-
bolism requires knowing the amount of oxygen the body inhales or
the amount of carbon dioxide and nitrogen waste were produced
from the cellular breathing process [14]. This task is not trivial, as it
involves using devices such as mask calorimeters to measure the
gas intake and outtake. Other devices can also be used to estimate
the metabolic rate, such as pedometers, load transducers (also
known as foot-contact monitors), accelerometers, and heart rate
monitors. Those sensors individually provide an indirect estimate
of the metabolic rate and often result in numerous errors. Recent
advancement in smart wearable devices has made it possible to fit
most of these sensors into a single smart band, thus allowing an
accurate and continuous estimation of the metabolic rate. In this
paper, in order to estimate the metabolic rate, we will use the Fitbit
Charge HR™ smart wearable device that is equipped with a
pedometer, an accelerometer, and a heart rate sensor.

In this work, we first conduct a parametric study for the various
PMVenvironmental andpersonalparameters andhighlight thePMV
model sensitivity to these parameters. Next, we focus on the use of a
wearable fitness device to acquire the metabolic rate for occupants
during normal life activities. The organization of this paper is as
follows. In Section 2, we simulate the PMV parameters interaction
and their effect on the comfort zone using multi-dimensional plots.
Next, in Section 3, we monitor the metabolic rate of two occupants
for a day and identify those errors that could result from taking the
MET value as a constant value. In Section 4, we summarize the paper
and provide some conclusions. Finally, in Section 5 we introduce
some of our ongoing and future work for the use of wearable device
data in the development of personalized comfort mode.
2. Parametric studies of the PMV parameters and their effects
on the comfort zone

There has been an increasing interest in studying the combined
effect of temperature, humidity, and air velocity on PMV values, but
less attention has been paid to the effect of metabolism and
clothing. In this section, we follow a general approach in studying
the interaction of these factors. First, we plot and discuss multiple
areas of comfort under the 10% dissatisfaction criteria, i.e., PMV
value is between �0.5 and 0.5, while varying the thermal comfort
parameters (including the personal parameters) a pair at a time.
Then, we construct plots showing comfort zones as a surface while
varying three different PMV parameters. In the remainder of this
paper, unless otherwise stated, the radiant temperature is assumed
to be equal air temperature [3,15], and any parameter that does not
vary in the simulation is assumed to be constant as follows:
clothing ¼ 0.65 CLO (clothing condition), relative humidity
(RH) ¼ 50%, MET ¼ 1.0 [3,4](metabolism conditions), and air
velocity ¼ 0.5 ms-1.
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2.1. Parametric study and interactions of environmental thermal
conditions

The comfort area (PMV value is between �0.5 and 0.5) as a
function of temperature and humidity is depicted as a trapezoid in
Fig.1(a). This plot can be used to explain the relative humidity effect
on comfort. On a dry (low humidity) day, air has extra capacity to
hold water compared to moist (high humidity) day. Hence, a body,
through evaporative and latent respiration cooling, can lose heat
faster, thus making it feel colder at the same ambient temperature.
This phenomenon explains, for example, why in Fig. 1(a) the pair
(ta ¼ 28�C, RH ¼ 30%) lies within the comfort zone, while the pair
(ta ¼ 28�C, RH ¼ 60%) does not. For the same reason, high relative
humidity means high vapor content in the air. Hence, the generated
heat from a human body is trapped and cannot be rejected to the
surrounding air by evaporative cooling. Fig. 1(a) can be used as a
guideline for a thermostat logic to maintain occupants' comfort
based on temperature and humidity control.

Air velocity helps in maintaining comfort at high temperatures
by increasing the heat-rejection rate through force convection.
Fig. 1(b) shows the comfort zone as a function of air velocity and
temperature. It is apparent from this figure that an occupant might
tolerate higher temperatures as the air velocity increases. For
example, even though the air temperature of 28.5�C is considered
to be uncomfortable for all possible relative humidity values above
30%, as shown in Fig. 1(a), it is within the comfort zone once the air
velocity exceeds 1.5 ms-1. This argument necessitates the need for a
4D plot showing the comfort domain (fourth dimension) as a
function of humidity, temperature, and air velocity, as shown in
Fig. 2(a). This plot shows the humidity-temperature trapezoid
comfort area shift to the left (higher temperature) as air velocity
increases. Fig. 2(a) was obtained by merging at least three 3D plots,
shown in Fig. 2 (b), (c), (d), that simulate the multiple three pa-
rameters pairs' combination on the PMV value.

2.2. Parametric study and interactions of environmental thermal
and personal parameters

Fig. 3(a) shows the comfort zone area as a function of temper-
ature and clothing, indicating that the comfort zone is very sensi-
tive to clothing. An interesting extremely high sensitivity is noticed
when CLO is around 0.5. This value lies between 0.36 CLO, the CLO
value of wearing a short-sleeved shirt and shorts, and 0.57 CLO, the
CLO value of wearing a short-sleeved shirt with trousers. This
Fig. 1. Interaction of air temperature: (a) with relative humi
behavior occurs around a clothing point where a comfortable hu-
man body changes from a hot to cold feeling. However, this
behavior could be due to the use of two discrete equations in the
PMV model to calculate the 'clothing area factor’. Fig. 3(a) confirms
the naive observation that two people under similar thermal con-
ditions can feel differently because of their clothing. More specif-
ically, higher clothing values make the body tolerant to lower
temperatures. For example, an occupant at 17�C air temperature
and 2 CLO is predicted to be comfortable. This is true because
clothing partially isolates the human body and helps to decrease
the rate of heat rejection to the outside. On the other hand, high
CLO values can quickly move a person out of his/her comfort zone
at mild/high temperatures. In that case, body heat becomes trapped
inside, creating an extreme feeling of warmth and thermal dissat-
isfaction. Fig. 3(a) also shows that low CLO values result in people
tolerating higher ambient temperatures and being very sensitive to
mild ambient temperatures. For example, at 0.4 CLO, a human body
can tolerate an ambient condition of over 30�C air temperature and
humidity ratio of 50%, but the same body can feel cold with ambient
temperatures under 28�C. From this discussion, it can be concluded
that clothing is very critical to thermal comfort and should not
assumed in a building to be a constant.

Metabolism is related to heat generation in the human body. As
the metabolism (MET) of an occupant increases, the heat genera-
tion rate of his/her body increases, leading to a warmness sensa-
tion. Metabolism is one of the personal factors in the PMV model
that is difficult to estimate and is usually assumed to be constant in
most proposed PMV comfort model applications. In a perfect world
and if metabolism is measured, a heating, ventilation, and air-
conditioning (HVAC) system needs to compensate for an increase
in the metabolic rate by controlling the ambient environmental
conditions such as decreasing the air temperature, increasing the
air velocity, or reducing the relative humidly. Fig. 3(b) shows the
comfort zone as a function of metabolic rate in METs and air tem-
perature. As expected, the figure shows better comfort results at
low air temperature as the metabolic rate increases. This can be
explained by the fact that lower ambient temperatures are needed
to reject the internal heat through natural or forced convection. At a
high metabolic rate, the body is highly intolerant to high and even
mild temperatures. For example, as shown, at a metabolic rate of
1.5 MET, an occupant is thermally uncomfortable at 26 �C, a tem-
perature that is well within the comfort zone with a metabolic rate
of 1.0 MET. This 1.0 MET, according to ASHRAE Standard 55 tables, is
the metabolic equivalent of a person sitting at rest without
dity, (b) with air velocity, and resultant comfort zones.



Fig. 2. (a) 4D plot of interaction between air temperature, humidity, and air velocity, and resultant comfort zone. In this plot, the surface represents all points where the PMV value
is between �0.5 and 0.5 (comfort zone) and its color is insignificant, (b), (c), (d) are 3D plots that were used to generate the 4D plot, simulating all three parameters pairs'
combination on the PMV value.

Fig. 3. Interaction of air temperature: (a) with clothing, (b) with air metabolism, and resultant comfort zone.
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engaging in any physical and mental activities, and is widely
accepted to represent metabolism in the PMV equations when they
are used tomodel comfort in buildings [3,4]. In this paper, however,
we show the use of smart wearable devices to accommodate
building occupants' metabolic rate variation in the PMV model
calculation.

Fig. 4(a) shows the metabolism from a different angle, by
displaying its interactions with air temperature and relative hu-
midity. As the metabolic rate increases, the body requires a means
to reject the heat/gain cooling in order to stay thermally comfort-
able. One option is to lower the relative humidity (i.e., air has the
capacity to absorb water vapor) in order to provide more cooling
through latent respiration and/or sweating. Another option is to
increase the heat-rejection rate due to radiation, convection, and



Fig. 4. (a) 4D plot of interaction between air temperature, humidity, and metabolism, and resultant comfort zone. In this plot, the surface represents all points where the PMV value
is between �0.5 and 0.5 and its color is insignificant, (b), (c), (d) are 3D plots that were used to generate the 4D plot, simulating all three parameters pair's combination on the PMV
value.
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dry respiration by lowering the ambient temperature. The gener-
ated comfort surface shows a very high sensitivity to metabolism
compared to relative humidity and temperature (i.e., surface
gradient is higher in MET axis than in direction of relative humidity
axis). The sensitivity analysis is discussed in great details in the next
section. The low-curve gradient in the direction of the relative
humidity axis may reflect the fact that sweating and latent respi-
ration alone are not fast enough to reject heat from the body at a
higher metabolic rate.
Fig. 5. Comfort region surface relating to interaction between air temperature,
clothing, and the metabolic rate.
We close our discussion by presenting Fig. 5, which indicates the
effects of varying air temperature, clothing, and metabolism on the
comfort zone. In general, this figure shows that metabolism has a
larger effect on an occupant's thermal sensitivity comfort compared
to clothing. However, as shown in Fig. 3(a), the effect of clothing is
more dominate for lower CLO values.
2.3. Sensitivity analysis of the PMV environmental thermal and
personal parameters

In this section we study the PMV sensitivity to its thermal and
personal parameters. Sensitivity is defined as the partial change in a
dependent variable (PMV value) due to the change in one of its
independent variables. Mathematically, it is defined as:

Sx½f ðx; y; zÞ� ¼ vf ðx; y; zÞ
vx

(5)

where Sx is the sensitivity with respect to parameter x, the inde-
pendent variable. Forward finite difference equation is used to
numerically evaluate the partial derivative as follows:

f 0ðxiÞ ¼
ðf ðxiÞ � f ðxi�1ÞÞ

xi � xi�1
(6)

Sensitivity gives a good indication about the magnitude of
change in the PMV model value relative to one of its parameters.
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Some of the lowest-hanging fruit of this analysis, from an energy
perspective, is the determination of the most effective control pa-
rameters to achieve comfort in a building.

A complete sensitivity analysis for the PMV model is very
complex due to the strong interaction between its parameters and
is beyond the scope of this paper. Focus will be given to PMV
sensitivity to metabolism. Fig. 6 shows 3D plots for the PMV
sensitivity to the metabolism value at different air temperature
values (Fig. 6(a)), different clothing values (Fig. 6(b)), different air
Fig. 6. 3D plots for the PMV sensitivity to the metabolism value at different (a) air temperatu
of the PMV sensitivity to metabolism at air temperature (AT) ¼ 20, 22, and 28C. The plot sho
temperatures.
velocity values (Fig. 6(c)), and different humidity values (Fig. 6(d)).
Fig. 6(a), for example, was obtained by applying the partial deriv-
ative Equation (6) over the data in Fig. 4 b. The figures demonstrate
that the PMV sensitivity to metabolism is not constant and it varies
according to the following observations: (1) PMV value is more
sensitive to metabolism at lower metabolism values, (2) PMV
sensitivity to metabolism decreases at higher clothing and air
temperature values, (3) humidity and air velocity has the least
impact on the PMV sensitivity to metabolism. For more illustration
re, (b) clothing conditions, (c) air velocity, (d) humidity values, and (e) shows 2D slices
ws higher PMV sensitivity to metabolism at lower metabolism values and low ambient
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on observations 1 and 2, we show multiple 2D slices of Fig. 6(a) at
different air temperature values in Fig. 6(e). Fig. 6(e) shows that a
sensitivity up to 3.5 MET�1 (i.e. one MET difference can cause up to
3.5 change in the PMV scale) can be obtained at air
temperature ¼ 20C

�
at low MET values compared to 1.4 MET�1 at

higher MET values. Moreover, the same figure shows that the
sensitivity is around 1.0 MET�1 even for low MET values when air
temperature ¼ 28 C

�
. It should be noted here that PMV calculations

will yield exaggerated results at high metabolic rates due to heat
compensation by sweating as shown by Ref. [16].

Fig. 7 compares the PMV model sensitivity against five of its
parameters (metabolism, air velocity, humidity, clothing, and air
temperature). For each parameter, the sensitivity was calculated
while the rest of the parameters were held at the constant default
values that were listed at the beginning of the paper.

Due to clothing discontinuity issues around 0.5, the PMV
sensitivity to clothing were plotted only for clothing values above
0.55. The figure confirms our early conclusion that PMV model is
highly sensitive to the personal parameters. Moreover, the figure
shows a very interesting behavior. The absolute PMV sensitivity
value (PMV sensitivity to air velocity has the only negative sign as
an air velocity increase (cooling effect) should reduce the PMV
value) exponentially converges for all parameters, but not humidity
and air temperature, to a low value as the PMV parameters in-
creases. Air temperature and humidity are the only two parameters
that the PMV sensitivity to them almost hold constant. Worth to
mention that the sensitivity values in the figure represent the rate
of change of the PMV value rather than the actual PMV value. Hence
even the figure shows a very small constant sensitivity value for
humidity (~0.007 RH�1), over the full expected humidity range
(0%e100%) the PMV value changes by up to 0.7. This value is way
much less than the expected change of the PMV value of 5.78 over
air temperature range of (15 C

�
- 32 C

�
), assuming an average PMV

sensitivity to air temperature of 0.34�C�1. 5.78 is almost near the
full range of the PMV scale ‘6’. In other words, changes in air
temperature by itself can drive the thermal sensation of an occu-
pant fromvery cold to very hot.We close our PMVmodel sensitivity
analysis with Table 1, where summarized the PMV sensitivities to
its parameters in Fig. 7 are averaged and summarized.

3. Metabolism estimation using smart wearable device

Metabolism is difficult tomeasure and is usually assumed to be a
constant value for occupants in a building (e.g. rest condition [3]).
However, due to the ever-increasing popularity and advancement
of wearable fitness devices, the estimation of metabolism becomes
(a) 

Fig. 7. PMVmodel sensitivity to (a) metabolism, air velocity, humidity, and air temperature, (
personal parameters, and its sensitivity to metabolism, clothing, and air velocity, changes w
much easier andmore convenient. In this paper, we have used Fitbit
Charge HR™ band data to estimate metabolism as a case study.
Recent Fitbit® wearable devices were shown to have an accuracy
level up to 95% [17]. However, other wearable devices with more
sensors and that are known to have higher accuracy could be used
instead in this investigation. Fitbit® can be easily configured to
share the metabolic rate, heart rate, and activity level of occupants
to a computing unit in real time. These pieces of information are
updated every minute to enable, if needed, a fast response. How-
ever, to accommodate that the PMV model was designed assuming
steady thermal conditions, a simple averaging was applied on these
measurements.

3.1. Fitbit® metabolism calculation

Themetabolism of a Fitbit® user is calculated as amultiple of the
basal metabolic rate (BMR), which is defined as the minimum rate
of energy expenditure per unit time by an endothermic human at
rest [18]:

BMR ¼
�
10m
1 Kg

þ 6:25h
1 cm

� 0:5a
1 year

þ s
�

Kcal
day

(7)

wherem is the mass of the body in kilograms, h is the height of the
body in cm, a is the age in years, and s is a factor relating to sex, as
follows:

s ¼
	 þ5 for males
�161 for females

(8)

Fitbit® also uses a built-in accelerometer to infer the activity
level of the wearer [2]. It uses this information to calculate the
estimated the wearer's energy requirement (EER), which is related
to the age, sex, weight, height, and physical activity of the user. For
males, the EER is

EER ¼ 864� 9:72 aðyearsÞ þ PAð14:2mðkgÞ þ 503 hðmetersÞÞ
(9)

and for females, the EER is

EER ¼ 387� 7:31 aðyearsÞ þ PAð10:9mðkgÞ þ 660:7hðmetersÞÞ
(10)

where PA is the physical activity level that is related to the motion
of the person and is measured by Fitbit®’s built-in accelerometer as
well as the physical properties of the wearer. The PA is calculated
(b)

b) and to air temperature. The figure show that PMV model is very high sensitive to the
ith these parameters values and hold constant for air temperature and humidity.



Table 1
PMV sensitivities to its parameters summary obtained from Fig. 7.

Parameter Sensitivity (mean) Sensitivity (range)

Air temperature (ta) SAT y 0.34�C�1 0.04
Humidity (RH) SRH y 0.007 RH�1 ~0
Clothing (CLO>0.5) SCLO ¼ 1.3 CLO�1 1.22
Clothing (CLO<0.5) SCLO ¼ 5.53 CLO�1 2.8
Air velocity (V > 0.5) SAV ¼ �0.72 m�1s 0.87
Air velocity (V < 0.5) SAV ¼ �2.2 m�1s 2.9
Metabolism (MET > 1) ta ¼ 20 �C SMET ¼ 2.09 MET�1 3.37

ta ¼ 22 �C SMET ¼ 1.6 MET�1 2.0
ta ¼ 28 �C SMET ¼ 0.79 MET�1 1.25
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for men as [19].

PA ¼

8>><
>>:

1 ; 1:0< PAL<1:4 ðSedentaryÞ
1:12; 1:4< PAL<1:6ðLow activeÞ
1:27; 1:6< PAL<1:9ðActiveÞ

1:54; 1:9< PAL<2:5ðVery activeÞ
(11)

and for women as

PA ¼

8>><
>>:

1 ; 1:0< PAL<1:4ðSedentaryÞ
1:14; 1:4< PAL<1:6ðLow activeÞ

1:27; 1:6< PAL<1:9 ðActiveÞ
1:45; 1:9< PAL<2:5ðVery activeÞ

(12)

PAL ¼ ððIe1Þ½ð1:15=0:9Þ � DðminutesÞ�=1440ÞÞ=ðBEE=½0:0175
� 1440�wðkgÞ�Þ

(13)

where I and D are the activity intensity (inferred from heart rate
and accelerometer measurements) and duration, respectively, and
BEE is the basal energy expenditure, given by
BEE ¼
	

2933:8� aðyearsÞ þ 456:4� hðmetersÞ þ 10:12�w ðkgÞ;Men
2472:67� aðyearsÞ þ 401:5� hðmetersÞ þ 8:6�wðkgÞ; Women

(14)
Once EER and BMR are calculated, the metabolic can be calcu-
lated as

MET ¼ EER
BMR

(15)

From Equation (15), MET is actually the ratio between the en-
ergy generated while performing some activity to the rest of the
body's metabolic rate. This MET is used to estimate the amount of
calories burned by the human within the equation of the PMV
model. Next, we show results for MET values monitored over time
for two occupants.

3.2. Data capturing using Fitbit

The Fitbit sensor data are stored in Fitbit cloud service after
synchronizing the wearable device with a pair device (e.g. mobile
or PC). The OAuth 2.0 protocol, supported by the Fitbit cloud ser-
vice, was used to connect to the Fitbit cloud service. To accesses the
Fitbit data, an application was built using the Flask micro frame-
work. Flask is a python library to implement a lightweight micro
framework based on Werkzeug and Jinja2. This implementation is
accessible via every Internet browser. A user may initiate, using the
application, a data request that is then forwarded to Fitbit cloud
page for authentication. After a successful authentication, a callback
service in flask will be triggered to request the data. Finally, a link to
the extracted data as a comma-separated value file (CSV) would be
shown onweb page. These steps are summarized in Fig. 8 and could
be applied simultaneously for a group of occupants in a building to
arrive to an average metabolism value that can be used in the PMV
calculation.

3.3. Monitoring metabolic rate during normal day activates

In this section, we investigate the effect of metabolism on the
comfort level for building occupants while performing normal life
activates. As a proof of concept, a simple experimentwas conducted
on a 22-year-old and 35-year-old male graduate students for more
than a half day. These students were asked to carry awireless HOBO
MA1101 data logger to record their indoor environmental condi-
tions (ambient temperature and humidity) while wearing a Fitbit®

device to monitor their heart rate, activity level, and rate of caloric
consumption per minute. Moreover, the students were asked to
mark their clothing status through a smart phone application. The
Fitbit wearable device data, the HOBO data, and the clothing status
were all joined using a python based application. These data were
used to determine the students PMV values every minute and then
averaged for each 30 min. In this experiment, the two students
were asked to perform similar normal life activities while working
at office or at home. More experiments are planned to involve
bigger human subject experiment size and to compare accuracy
between different wearable devices.

Fig. 9(a) and (b) show plots for the measured MET values using
the Fitbit® device along with the corresponding PMV value and the
assumed PMV value (i.e., using a constant metabolic rate of 1.0 MET
[2e5]). These plots show that the MET value keeps changing
throughout the entire day. For example, in Fig. 7(a), for the younger
student, the metabolic rate was consistently over 1.0 MET
throughout the entire day, the lowest being 1.09 around 1:00 p.m.
Even at its lowest value, the metabolic rate was higher than the
assumed value of 1.0 MET. The figure also shows a very large in-
crease in the MET value, and consequently PMV value, during the
student's study-hours at home between (3:00 p.m.e5:00 p.m.) and
(7:00 p.m.e9:00pm), while it decreases during the student's relax
hours between (5:00 p.m. and 7:00 p.m.). Throughout most of the



Fig. 8. A chart explains the built application processes to accesses Fitbit data.
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studying period, the student was thermally dissatisfied, feeling hot,
with an average PMV value of 2.5, while the assumption is that he
should be comfortable with a PMV value of less than �0.2
(assuming a constant MET value of 1.0). Even though the student
was not involved in physical labor, the plots show that mental work
and simply standing and walking around seem to increase the MET
(a)   22-year-old male student
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Fig. 9. MET and PMV values, clothing, and indoor environmental conditions recorded for
metabolism is used in the calculation instead of the assumed value of 1.0 MET. Also this di
inside a building are ignored.
value to an average of greater than 3.0. From our earlier findings
about the PMV model's high sensitivity to metabolism, as shown
previously in Figs. 4 and 5, this should explain the very large error
between the assumed and actual PMV calculation.

Fig. 9(b) shows similar higher metabolic rate during daily
normal activities for the 34-year-old student. These activates
include typing (office) and eating (home). The figure shows that the
MET value was sometimes less than 1.0 at complete rest (sleeping).
Fig. 9 confirms that not only the MET value may vary over time for
an occupant, but may also vary among occupants preforming
similar daily activates. Hence a single constant value, such 1 MET or
any other value, can't be used to represent the metabolic value in
the PMV model.
4. Conclusions

The PMV value of an occupant is calculated based on multiple
thermal environment and personal parameters. While it is not a
perfect model, the best case should provide an 80% accuracy level,
assuming that all input parameters are accurately measured. In this
study, the quantitative sensitivity of the PMV value to its parame-
ters is defined. We show that the effect of the personal parameters
far exceeds that of the environmental factors within the normal
parameter ranges. The PMV model simulation analysis performed
in this work can help to prioritize measurements with the highest
sensitivity. For example, the relative humidity has low thermal
comfort sensitivity expect if it exceeds an extreme range (less than
30% andmore than 60% [20,21]. Hence, humidity is rarely in need of
monitoring, whereas metabolism sensitivity is much higher and
(b) 35-year-old male student
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two students. The figure shows a big difference in the PMV value when the actual
fference is shown to be higher for the younger student. Data while students were not



Fig. 10. Smart watch user app prototype for mobile device.

Fig. 11. (a) An occupant wearable device biometrics data along with his comfort feedback, (b) ANN Model and Non-linear fitting model compared with actual occupant vote.
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needs to be closely and continuously measured to assure reliability
of the PMV comfort model. The metabolic rate is continuously
changing over time, even without performing any notable physical
activities. For example, this paper shows that simple mental
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activities and doing regular tasks might lead to some increase in the
MET value, which can lead to thermal discomfort.

The metabolic rate, which is assumed to be constant in real
building throughout most of the literature, is now easy to estimate
using wearable devices. We have shown, in our case study using a
commercial wearable device, that a person who is not fully at rest
will potentially have high MET value and may experience discom-
fort during the majority of working hours. The high sensitivity to
the metabolic rate was apparent in our case study plots as the
deviation between the estimated and actual PMV value is large.
This shows the importance of measuring the metabolic rate in
buildings to assure the reliability of the PMV model. Accurately
measuring the metabolic rate of an occupant can extend the area of
application of the PMV model to those who might be engaged in
physical activities, such as waiters and waitresses in a restaurant, or
people working out in gyms. And while it is practically impossible
to make everyone comfortable, taking into account the individual
differences in peoples' metabolism can help achieving the 80% true
satisfaction rate that is expected from the PMV model.

5. Future work

Because the PMV model relies on steady state heat equations, it
cannot be used for transient comfort computation. This further
limits the use of this model. Due to the obvious limitations of the
PMV model, future plans are to investigate the development of a
personalized comfort model based on biometric data from wear-
able devices and other environment conditions such as ambient
temperature and humidity. A user interface application to receive
an occupant's Microsoft Smart Band 2™ biometric data and his
direct feedback on comfort conditions is developed and is shown in
Fig. 10. The Microsoft Smart Band 2™ was chosen due to its high
accuracy and the abundance of its biometric sensors (i.e. skin
temperature sensor, heart rate sensor, metabolic rate sensor, and
skin resistance sensor). Fig.11 (a) shows sample of the app collected
data for an occupant. In our current study, five students were given
the Microsoft Band along with the HOBO MA1101 data logger to
measure temperature and relative humidity. The students were
asked to share their comfort level periodically and whenever they
felt thermal discomfort. The study took place over the course of
summer 2016. Students' data was stored in a database for future
analysis. The goal of this study is to investigate the development of
a personalized comfort model for every user where the model
would take into account the subjective nature of thermal comfort.

Different machine learning algorithms and nonlinear fitting are
planned for training the best model to correlate the biometric data
with occupant feedback. Sample preliminary work that are shown
in Fig. 11 (b), shows promising results. In the figure, the two lines
represent the models; a 30e1 feedforward-back-propagation arti-
ficial neural network (ANN) and a non-linear curve fitting model,
and the yellow blocks are the actual occupant's vote. Issues such as
model over-fitting is planned to be investigated with bigger sample
test size.

Nomenclature

a Age, years
BEE Basal Energy Expenditure, Kcal/day
BMR Basal Metabolic Rate, Kcal/day
D Duration of Activity, minutes
EER Estimated Energy Requirement, Kcal/day
fcl Clothing Factor
h Height, cm
hc Convective Heat Transfer Coefficient, W/m2 K
I Activity Intensity
Icl Clothing Insulation, CLO
L Overall Heat Transfer around occupant, W/m2

M Metabolic Rate, W/m2

MET Metabolic Equivalence, MET
m mass, Kg
Pa Partial Pressure of Water, KPa
PA Physical Activity Level
PAL Physical Activity Level Factor
PMV Predicted Mean Vote
RH Relative Humidity
S Sensitivity, unit̂ �1
s BMR Sex Factor
ta Air Temperature, �C
tcl Clothing temperature, �C
tr Mean Radiant Temperature, �C
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