تلفن: ۰۴۱۴۲۲۷۳۷۸۱
تلفن: ۰۹۲۱۶۴۲۶۳۸۴

ترجمه مقاله مدلسازی انتشار اطلاعات در شبکه های اجتماعی برای پیش بینی زمانی پویا – نشریه IEEE

عنوان فارسی: مدلسازی انتشار اطلاعات در شبکه های اجتماعی برای پیش بینی زمانی پویا
عنوان انگلیسی: Modeling Information Diffusion over Social Networks for Temporal Dynamic Prediction
تعداد صفحات مقاله انگلیسی : 4 تعداد صفحات ترجمه فارسی : 14 (شامل 2 صفحه رفرنس انگلیسی)
سال انتشار : 2017 نشریه : آی تریپل ای - IEEE
فرمت مقاله انگلیسی : PDF فرمت ترجمه مقاله : ورد تایپ شده و pdf
نوع مقاله : ISI پایگاه : اسکوپوس
نوع ارائه مقاله : ژورنال ایمپکت فاکتور(IF) مجله : 5.876 در سال 2018
شاخص H_index مجله : 148 در سال 2019 شاخص SJR مجله : 1.140 در سال 2018
شاخص Q یا Quartile (چارک) : Q1 در سال 2018 شناسه ISSN مجله : 1041-4347
کد محصول : 10056 وضعیت ترجمه : ترجمه شده و آماده دانلود
محتوای فایل : zip حجم فایل : 2.10Mb
رشته و گرایش های مرتبط با این مقاله: مهندسی فناوری اطلاعات، شبکه های کامپیوتری و اینترنت و شبکه های گسترده
مجله: یافته ها در زمینه دانش و مهندسی داده - Transactions on Knowledge and Data Engineering
دانشگاه: موسسه فناوری هاربین، چین
کلمات کلیدی: انتشار اطلاعات، عوامل هوشمند، مدل، پیش بینی
کلمات کلیدی انگلیسی: Information diffusion - intelligent agents - model - prediction
وضعیت ترجمه عناوین تصاویر و جداول: ترجمه شده است ✓
وضعیت ترجمه متون داخل تصاویر و جداول: ترجمه شده است ✓
وضعیت ترجمه منابع داخل متن: به صورت عدد درج شده است ✓
وضعیت فرمولها و محاسبات در فایل ترجمه: به صورت عکس، درج شده است
بیس: است ✓
مدل مفهومی: دارد ✓
پرسشنامه: ندارد ☓
متغیر: ندارد ☓
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
رفرنس در ترجمه: در داخل متن و انتهای مقاله درج شده است
doi یا شناسه دیجیتال: https://doi.org/10.1109/TKDE.2017.2702162
ترجمه این مقاله با کیفیت عالی آماده خرید اینترنتی میباشد. بلافاصله پس از خرید، دکمه دانلود ظاهر خواهد شد. ترجمه به ایمیل شما نیز ارسال خواهد گردید.
فهرست مطالب

چکیده

1. مقدمه

2. تدوین مساله

3. مدل پیشنهادی

4. الگوریتم ها

4.1. الگوریتم های یادگیری

5. آزمایشات

5.1. شرایط آزمایشی

5.2. عملکرد پیش بینی

6. نتیجه گیری

منابع

نمونه متن انگلیسی

Abstract

Modeling the process of information diffusion is a challenging problem. Although numerous attempts have been made in order to solve this problem, very few studies are actually able to simulate and predict temporal dynamics of the diffusion process. In this paper, we propose a novel information diffusion model, namely GT model, which treats the nodes of a network as intelligent and rational agents and then calculates their corresponding payoffs, given different choices to make strategic decisions. By introducing time-related payoffs based on the diffusion data, the proposed GT model can be used to predict whether or not the user's behaviors will occur in a specific time interval. The user's payoff can be divided into two parts: social payoff from the user's social contacts and preference payoff from the user's idiosyncratic preference. We here exploit the global influence of the user and the social influence between any two users to accurately calculate the social payoff. In addition, we develop a new method of presenting social influence that can fully capture the temporal dynamics of social influence. Experimental results from two different datasets, Sina Weibo and Flickr demonstrate the rationality and effectiveness of the proposed prediction method with different evaluation metrics.

نمونه متن ترجمه

چکیده

نحوه مدلسازی فرآیند انتشار اطلاعات در شبکه های اجتماعی، کار تحقیقاتی حیاتی شمرده می شود. اگر چه تلاش های متعددی برای این مطالعه صورت پذیرفته است اما تعداد کمی از آن ها قادر به شبیه سازی و پیش بینی پویایی زمانی فرآیند انتشار هستند. برای رفع این مشکل، ما مدل انتشار اطلاعات جدیدی (مدل GT) را پیشنهاد نمودیم که کاربران شبکه را عوامل هوشمندی تلقی می نماید. این عوامل به اتفاق همه همسایه های تعاملگر خود را لحاظ نموده و بازده گزینه های مختلف خود را برای تصمیمات استراتژیک محاسبه می کنند. ما فاکتور زمانی را وارد بازده کاربر نموده که در نتیجه آن، مدل GT نه تنها قادر به پیش بینی رفتار یک کاربر خواهد بود بلکه زمان بروز رفتار مزبور را نیز پیش بینی می نماید. هم اثرگذاری کلی و هم اثرگذاری اجتماعی در محاسبه بازده وابسته به زمان مورد کنکاش قرار گرفتند که در آن روش جدید بازنمایی اثرگذاری اجتماعی برای شناخت کامل خواص زمانی پویا اثرگذاری اجتماعی بین کاربران طراحی گشته است. نتایج تجربی مربوط به سینا ویبو و فلیکر، اثربخشی روش های ما را تایید نمودند.