منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله الگوریتم جدید طبقه بندی انجمنی سریع برای تشخیص وب سایت های فیشینگ

عنوان فارسی
الگوریتم جدید طبقه بندی انجمنی سریع برای تشخیص وب سایت های فیشینگ
عنوان انگلیسی
A new fast associative classification algorithm for detecting phishing websites
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
6
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E2176
رشته های مرتبط با این مقاله
مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
داده کاوی
مجله
محاسبات کاربردی نرم - Applied Soft Computing
دانشگاه
دانشگاه پترا، گروه MIS، اردن
کلمات کلیدی
طبقه بندی انجمنی، وب سایت های فیشینگ، تقسیم بندی، داده کاوی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

ABSTRACT


Associative classification (AC) is a new, effective supervised learning approach that aims to predict unseen instances. AC effectively integrates association rule mining and classification, and produces more accurate results than other traditional data mining classification algorithms. In this paper, we propose a new AC algorithm called the Fast Associative Classification Algorithm (FACA). We investigate our proposed algorithm against four well-known AC algorithms (CBA, CMAR, MCAR, and ECAR) on real-world phishing datasets. The bases of the investigation in our experiments are classification accuracy and the F1 evaluation measures. The results indicate that FACA is very successful with regard to the F1 evaluation measure compared with the other four well-known algorithms (CBA, CMAR, MCAR, and ECAR). The FACA also outperformed the other four AC algorithms with regard to the accuracy evaluation measure.

نتیجه گیری

5. Conclusions


Phishing is an attempt, usually made through fake websites or emails, to steal an individual’s private information. Phishing websites are a significant problem, preventing users from carrying out activities via the internet. This paper aims to develop a new, fast AC algorithm called FACA and investigate FACA against four well-known AC algorithms (CBA, CMAR, MCAR, and ECAR) with regard to classification accuracy and F1 evaluation measures toward the phishing dataset. The results demonstrate that the FACA algorithm outperformed all AC algorithms with regard to accuracy and F1. Our findings also indicate thatthere is potentialfor the use of computerized data mining techniques in predicting the complex problem of phishing websites.


بدون دیدگاه