تلفن: ۰۴۱۴۲۲۷۳۷۸۱
تلفن: ۰۹۲۱۶۴۲۶۳۸۴

دانلود ترجمه مقاله رویکردها و مشکلات در پاکسازی داده – مجله IEEE

عنوان فارسی: پاکسازی داده: مسائل و شیوه های فعلی
عنوان انگلیسی: Data Cleaning: Problems and Current Approaches
تعداد صفحات مقاله انگلیسی : 11 تعداد صفحات ترجمه فارسی : 18
سال انتشار : 2000 نشریه : آی تریپل ای - IEEE
فرمت مقاله انگلیسی : PDF فرمت ترجمه مقاله : ورد تایپ شده
کد محصول : 3069 رفرنس : دارد
محتوای فایل : zip حجم فایل : 381.67Kb
رشته های مرتبط با این مقاله: مهندسی کامپیوتر
گرایش های مرتبط با این مقاله: مهندسی الگوریتم و محاسبات، مهندسی نرم افزار و هوش مصنوعی
دانشگاه: لایپزیگ، کشور آلمان
ترجمه این مقاله با کیفیت عالی آماده خرید اینترنتی میباشد. بلافاصله پس از خرید، دکمه دانلود ظاهر خواهد شد. ترجمه به ایمیل شما نیز ارسال خواهد گردید.
فهرست مطالب

چکیده

۱ مقدمه

۲ مسائل پاکسازی داده

۱ ۲  مسائل تک منبعی

۲ ۲ مسائل و مشکلات چند منبعی

۳ شیوه های پاکسازی داده

۱ ۳ تحلیل داده

۲ ۳ تعریف تبدیل داده

۳ ۳ حل تعارض

۴ حمایت ابزاری

۱ ۴ آنالیز داده و ابزارهای فنی مهندسی

۲ ۴ ابزارهای پاکسازی تخصصی

۳ ۴ ابزارهای ETL

۵ نتایج

نمونه متن انگلیسی

Introduction

Data cleaning, also called data cleansing or scrubbing, deals with detecting and removing errors and inconsistencies from data in order to improve the quality of data. Data quality problems are present in single data collections, such as files and databases, e.g., due to misspellings during data entry, missing information or other invalid data. When multiple data sources need to be integrated, e.g., in data warehouses, federated database systems or global web-based information systems, the need for data cleaning increases significantly. This is because the sources often contain redundant data in different representations. In order to provide access to accurate and consistent data, consolidation of different data representations and elimination of duplicate information become necessary. Data warehouses [6][16] require and provide extensive support for data cleaning. They load and continuously refresh huge amounts of data from a variety of sources so the probability that some of the sources contain “dirty data” is high. Furthermore, data warehouses are used for decision making, so that the correctness of their data is vital to avoid wrong conclusions.

نمونه متن ترجمه

مقدمه

پاکسازی داده که تنظیف یا حذف داده نیز نامیده می شود، مسئولیت خطا یابی و رفع آن و ناهمسانی ها داده به منظور ارتقاء کیفیت داده را برعهده دارد. در مجموعه های داده مانند فایل ها و پایگاههای داده، به خاطر غلط املایی در طول ثبت داده، از دست رفتن اطلاعات یا غیر معتبر بودن سایر داده ها ، مشکلاتی در کیفیت داده پدید می آید. وقتی لازم باشد چند منبع داده باهم تلفیق شوند، مثلاً در انبارهای داده، سیستم های پایگاه داده وابسته یا سیستم های اطلاعاتی اینترنتی جهانی ، در این شرایط نیاز به پاکسازی داده شدیداً افزایش می یابد. علت این امر آن است که در نمایشات مختلف، منابع اغلب محتوی داده های اضافی می باشند. به منظور دسترسی به داده های درست و همسان، تلفیق داده های مختلف و حذف اطلاعات المثنی الزامی می باشد. انبارهای داده نیاز شدیدی به حمایت از فرایند پاکسازی داده دارند. آنها مقادیر زیادی از داده های منابع مختلف را دائماً بارگذاری و تجدید می کنند، به همین خاطر احتمال وجود داده های بی ارزش در این منابع ، بالا می باشد. به علاوه، از انبارهای داده در فرایند تصمیم گیری نیز استفاده شده است، به گونه ای که برای جلوگیری از بروز نتایج غلط ، تصحیح داده ها الزامی می باشد.

نحوه خرید نسخه پاورپوینت این مقاله