Machine learning - Cryptocurrency trading - Quantitative trading systems
doi یا شناسه دیجیتال
https://doi.org/10.1016/j.mlwa.2022.100310
با خرید این کالا; ترجمه فارسی مقاله، مقاله انگلیسی، پاورپوینت و ترجمه خلاصه قابل دانلود خواهد بود. بلافاصله پس از خرید، دکمه دانلود ظاهر شده و محصول به ایمیل شما نیز ارسال خواهد گردید.
۰.۰(بدون امتیاز)
امتیاز دهید
فهرست مطالب
چکیده
1- مقدمه
2- کارها و تحقیقات مرتبط
3- رویکرد ذهنی و اکتشافی
4- روش پیشنهادی
5- آزمایش ها
6- نتیجه گیری و کارهای آتی
منابع
تصاویر فایل ورد ترجمه مقاله (جهت بزرگنمایی روی عکس کلیک نمایید)
فایل پاورپوینت این مقاله
در کنار ترجمه مقاله، فایل پاورپوینت این مقاله نیز ایجاد شده و در این محصول قرار داده شده است که پس از خریداری به همراه ترجمه قابل دانلود خواهد بود. تعداد اسلایدهای این پاورپوینت 22 می باشد و آماده ارائه در دانشگاه یا سایر سمینارها است.
فایل خلاصه ترجمه
در صورتی که نیاز به خلاصه ای از متن ترجمه این مقاله دارید، می توانید از فایل خلاصه ترجمه استفاده نمایید که به این محصول اضافه شده است. خلاصه ترجمه این مقاله در 7 صفحه در فایل word انجام شده و داخل بسته قرار گرفته است.
نمونه چکیده ترجمه متن فارسی
چکیده
تجارت ارز دیجیتال (رمزارز) در میان سرمایه گذاران بخش خصوصی بیش از پیش به محبوبیت رسیده است. مطابق با مطالعات اخیر، تأثیر مومنتوم بازار پایه را تحت تأثیر قرار می دهد. سیستم های معاملات کمی می توانند برای باز و بسته کردن موقعیت های معاملاتی شاخص های مومنتوم را اهرم قرار داده و نهایت استفاده را از آن ها ببرند. با این حال، رویکردهای موجود که تأثیر مومنتوم (تأثیر نیروی حرکت قیمت) در معاملات ارز دیجیتال (رمزارز) را بکار می گیرند به یادگیری ماشین اتکا نمی کنند. از آنجایی که این سیستم ها بر اساس قواعد و مقررات ایجاد شده توسط انسان ها می باشند متناسب با شرایط بسیار ناپایدار و شناور، که در بازارهای ارز دیجیتال کاملا معمول و رایج هستند، نمی باشند. این مقاله استفاده از رویکردهای یادگیری ماشین و اعمال نفوذ آن برای تشخیص اتوماتیک اثر مومنتوم در داده های بازار ارز دیجیتال را پیشنهاد می کند. برای هر ارز دیجیتال احتمال اینکه با اثر مومنتوم روی روز بعدی معامله گری و همچنین جهت مومنتوم تحت تأثیر قرار بگیرد را برآورد می کند. یک جلسه شبیه سازی و آزمون بازخورد، که روی سه ارز دیجیتال بسیار متداول و پرطرفدار انجام شده، نشان می دهد که مدل های یادگیری ماشین توانایی پیش بینی، تقریب خوب، نوسان کوتاه مدت قیمت و به موجب آن کاهش تعداد سیگنال های کاذب معامله و افزایش بازده سود سرمایه را در مقایسه با پیشرفته ترین رویکردها دارند.
2- کارها و تحقیقات مرتبط
1-2 رویکردهای مبتنی بر یادگیری ماشین برای معامله ی ارز دیجیتال
هرچند استفاده از یادگیری ماشین برای پیش بینی بازار سهام مقرر شده است (بوستوس و پومارس-کویمبایا، 2020؛ هوانگ و همکاران، 2019؛ اوبای اوغلو و همکاران، 2020؛ راندو و دی استالو، 2019)، برای تطبیق سیستم های معامله ی ارز با بازار ارز دیجیتال تلاش های کمی صورت گرفته است. به طور مشخص، آتاناسیو و همکاران (2019) کاربرد تکنیک های سنتی طبقه بندی مثل ماشین های بردار پشتیبان و درخت های تصمیم گیری را برای پیش بینی قیمت روز بعد ارز دیجیتال مورد ارزیابی قرار داده اند، درحالیکه در پژوهش های لاهمیری و بکیروس (2021)، لیویریس و همکاران (a2020) نویسندگان استفاده از تکنیک های یادگیری ژرف را مورد بررسی دقیق قرار داده اند. جنبه ی کلیدی کشف و بررسی انواع مختلف ورودی داده هایی مثل شاخص های مالی کلان و اطلاعات بلاک چین می باشد. علاوه براین، داده های شبکه های اجتماعی نیز برای پیش بینی قیمت های ارزهای دیجیتال مثل داده های توییتر (کرایجولد و دی اسمت، 2020) یا گیت هاب (GitHub) و داده های ردیت (گلنسکی و همکاران، 2019) بکار گرفته شده اند. حوزه ی فعالیت دیگری استفاده از روش های ترکیبی را بررسی می کند، ضمن اینکه به بررسی دقیق استفاده از رویکردهای سطحی استاندارد، مثل جنگل های تصادفی و ماشین افزایش گرادیان تصادفی (دربنتسف و همکاران، 2021)، و استفاده از مدل های یادگیری عمیق به عنوان یادگیران مؤلفه و اجزاء تشکیل دهنده (لیویریس و همکاران، b2020) می پردازند. سان و همکاران (2020) داده های روزانه ی قیمت مربوط به 42 ارز دیجیتال با شاخص های کلیدی اقتصادی بدست آمده از بازارهای سهام و بدون پشتوانه (Fiat market) را ترکیب می کنند تا الگوریتم درخت تصمیم گیری افزایش گرادیان را آموزش دهند. با این حال، تمامی ویژگی های فوق معمولا با درجه ی بالایی از اختلال و جنجال مشخص می شوند لذا فرآیند استنباط را پیچیده کرده و به راحتی قابل توضیح نیست. در راستای غلبه بر این مسئله، ژانگ و همکاران (2021) استفاده از یک واحد حافظه هوشیار و دقیق را پیشنهاد می کنند که واحد بازگشتی (تکرارشونده) درگاهی را با یک مؤلفه ی خودنگرش ترکیب می کند تا برای هر توالی ورودی حافظه ی هوشیار و دقیق ایجاد کند. نتایج تأیید می کنند که توالی خام و اولیه در حال حاضر اکثر اطلاعات مربوطه را ادغام می کند درحالیکه اطلاعات موقعیتی و زمینه ای به شدت برای ایجاد مدل های پیش بینی کننده ی دقیق قابل استفاده است. به جای پرداختن به پیش بینی کوتاه مدت قیمت مثل اثر لاهمیری و بکیروس (2021)، لیویریس و همکاران (a2020)، ژانگ و همکاران (2021)، این مقاله یک استراتژی جدید مبتنی بر یادگیری ماشین را با هدف پیش بینی اثر واکنش افراطی پیشنهاد می کند. از این رو، این استراتژی ویژگی های بازار پایه که با شواهد تجربی اخیر نمایان شده اند را دربر می گیرد (کاپورال و پلاستون، 2020) تا نهایت استفاده را از قدرت پیش بینی مدل های یادگیری ماشین برای قیمت های مبتنی بر تاریخ ببرد. ما معتقدیم که این اولین تلاش برای استفاده از یادگیری ماشین برای انجام معامله ی ارز دیجیتال براساس مومونتوم است.