دانلود رایگان مقاله انگلیسی مطالعه تحلیلی درباره عوامل اصلی آسیب رساننده به پی های شمعی در زلزله توهوکو - وایلی 2018

عنوان فارسی
مطالعه تحلیلی درباره عوامل اصلی آسیب رساننده به پی های شمعی در زلزله توهوکو در ساحل اقیانوس آرام در سال 2011
عنوان انگلیسی
Analytical study of the main causes of damage to pile foundations during the 2011 off the Pacific coast of Tohoku earthquake
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
10
سال انتشار
2018
نشریه
وایلی - Wiley
فرمت مقاله انگلیسی
PDF
کد محصول
E9233
رشته های مرتبط با این مقاله
مهندسی عمران
گرایش های مرتبط با این مقاله
زلزله، ژئوتکنیک، مدیریت ساخت
مجله
بررسی معماری ژاپن - japan architectural review
دانشگاه
Technical Research Center - Toda Corporation - Tokyo - Japan
کلمات کلیدی
آسیب زلزله، پی شمعی، اثر گروه شمعی، اتصال راس شمع، زلزله توهوکو در ساحل اقیانوس آرام در سال 2011
doi یا شناسه دیجیتال
https://doi.org/10.1002/2475-8876.12033
چکیده

Abstract


The authors performed static analyses using a foundation structure model to simulate the process leading to distinctive damage to pile foundations during the 2011 off the Pacific coast of Tohoku earthquake. Notable aspects of the analytical method used for this simulation include consideration of the nonlinear loaddeformation characteristics of pile elements, the dependence of the rotational stiffness at the pile head on the axial load, and the nonlinear behavior of soil spring including the pile group effect. The results of the simulations of pile failure for each loading direction provide a useful explanation of the observed damage to pile foundations. The proposed analysis method can be considered a practical approach to the seismic design of foundations subject to severe earthquakes.

نتیجه گیری

5. Conclusions


(1) The authors conducted seismic analyses to simulate the distinctive damage process of pile foundations where the characteristics of pile damage were observed to vary depending on pile position even in the same building and the same building frame, during the 2011 off the Pacific coast of Tohoku earthquake. The analysis results provide a reasonable explanation of the observed damage. The analysis model considered for the foundation structure provides a reliable evaluation of nonlinear behavior of the pile-soil system. The pile group effect is also taken into account depending on the pile position in relation to the loading direction.


(2) The analysis method considered 2 phases of the damage process to provide an efficient trace of the observed damage to piles. In Phase 1, the axial loads in Piles No. 1 and 2 increased under north-to-south loading, and the shares of horizontal load also increased, resulting in compression or shear failure at the pile head. In Phase 2, the remaining piles were subjected to pull-up forces under the sequence of the west-to-east loading, reduction in the rotational stiffness at the pile head, and damage to the middle part of the piles.


(3) There is high possibility that partial and consecutive damage occurs during severe earthquakes, particularly when building has an irregular shape and/or unequal load distribution. Design based on simplified method that assumes elastic behavior of piles, fixed conditions at the pile head, and constant soil springs, is completely inadequate in representing the pile damage mechanism. It is necessary to consider nonlinear load-deformation characteristics of piles, to construct an adequate model of the pile head connection with respect to axial load and to take into account the nonlinear behavior of soil springs including pile group effects for seismic design pile foundations, particularly while considering severe earthquake shaking. It should be noted that the influence of axial load is remarkable.


بدون دیدگاه