منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله محدوده دقیق مقادیر بهره ای در محاسبات بر اساس تجزیه دامنه

عنوان فارسی
محدوده دقیق مقادیر بهره ای در محاسبات بر اساس تجزیه دامنه
عنوان انگلیسی
Strict bounding of quantities of interest in computations based on domain decomposition
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
17
سال انتشار
2015
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E793
رشته های مرتبط با این مقاله
مهندسی مکانیک
گرایش های مرتبط با این مقاله
ریاضی کاربردی
مجله
روشهای کامپیوتری در مکانیک کاربردی و مهندسی - Computer Methods in Applied Mechanics and Engineering
دانشگاه
دانشگاه پاریس Saclay، فرانسه
کلمات کلیدی
تایید، بدون همپوشانی، روش تجزیه دامنه، پالایش محلی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


This paper deals with bounding the error on the estimation of quantities of interest obtained by finite element and domain decomposition methods. The proposed bounds are written in order to separate the two errors involved in the resolution of reference and adjoint problems: on the one hand the discretization error due to the finite element method and on the other hand the algebraic error due to the use of the iterative solver. Beside practical considerations on the parallel computation of the bounds, it is shown that the interface conformity can be slightly relaxed so that local enrichment or refinement are possible in the subdomains bearing singularities or quantities of interest which simplifies the improvement of the estimation. Academic assessments are given on 2D static linear mechanic problems.

نتیجه گیری

5. Conclusion


In this article, we extended two classical results of goal-oriented error estimation to problems solved by domain decomposition methods. We solved simultaneously both forward and adjoint problems on the same mesh using a block conjugate gradient algorithm and proposed a fully parallel procedure to recover admissible fields and estimate the error on the quantity of interest. Moreover, the error bounds separated the contribution of the discretization from the contribution of the iterative solver which lead to defining of a stopping criterion of the iterative solver that prevented oversolving. We also showed that the method could be easily extended to the case of locally enriched kinematics (using h or p refinements or dedicated enrichments) only constrained to contain the original coarse kinematic on the boundary of subdomains. This property provided a simple parallel way to improve estimators as soon as the singularities (local quantity of interests, crack tips, etc.) were not too close to the interface. The concepts were validated on academic examples using the most basic h-refinement strategy. Of course using ad-hoc enrichment instead of brutal h-refinement should improve the performance of the method. Future work will focus on exploiting the fact that the shape of the interface is preserved by the enrichment to define acceleration strategies, and on defining original strategies to balance the computational load between subdomains for the resolution of the refined problem.


بدون دیدگاه