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Abstract

This paper deals with bounding the error on the estimation of quantities of interest obtained by finite element and domain de-
composition methods. The proposed bounds are written in order to separate the two errors involved in the resolution of reference
and adjoint problems: on the one hand the discretization error due to the finite element method and on the other hand the algebraic
error due to the use of the iterative solver. Beside practical considerations on the parallel computation of the bounds, it is shown
that the interface conformity can be slightly relaxed so that local enrichment or refinement are possible in the subdomains bearing
singularities or quantities of interest which simplifies the improvement of the estimation. Academic assessments are given on 2D
static linear mechanic problems.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In order to certify structures by computations, two fundamental abilities must be gathered: (i) conducting large
computations which can be achieved by using non-overlapping domain decomposition methods to exploit parallel
hardware [1–3], (ii) warrantying the quality of the results which implies to use verification techniques. The computed
approximation is then completed by an estimation of its distance to the exact solution, that distance being either on a
global norm [4–7] or on a selection of engineering quantities of interest [8–10].

This paper is the sequel of contributions by the authors in order to associate domain decomposition methods (DDM)
and verification techniques. In [11] it was shown how admissible fields (aka balanced residuals) could be naturally
computed in parallel when solving one finite element system with classical DDM solvers like FETI or BDD. This tool
was necessary to obtain guaranteed error bounds. Moreover the proposed method encapsulated classical sequential
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techniques [12–15] that could be employed independently on the subdomains. In [16] a global upper bound of the
error was separated in two: the first contribution was purely due to the iterative solver employed in DDM and it could
be made as small as wanted by doing more iterations, whereas the second contribution depended on the discretization
and it was quasi-constant during the iterations. This result enabled us to stop iterations when the overall quality of
the approximation could not be improved, which was much earlier than classical criteria on the norm of the residual
would have suggested.

The purpose of this paper is to extend these works to the handling of quantities of interest. First we show how
estimation on quantities of interest can be conducted easily within DDM with a separation of the contribution of the
solver and of the discretization. Second we demonstrate that all the wanted properties can be preserved with nested
kinematics at the interface which simplifies the improvement of the estimation by local adaptation.

The question of separating the contribution of the solver and of the discretization, in goal-oriented error estimation,
was addressed in several other studies with different approaches. In [17,18], the quantity of interest was the mean
value of the unknown field in a region of the structure, the coarse mesh of the structure was seen as a decomposition
of the true refined mesh which allowed to take advantage of the properties of FETI algorithm. In [19], the authors
proposed constant-free asymptotic upper and lower bounds but they did not connect the iteration and discretization
contributions. In [20], error indicators separating contributions were developed in the context of multigrids methods
for Poisson and Stokes equations. They lead to a gain in terms of CPU time but the bounds were not guaranteed.
Using the dual weighted residual method [10] for goal-oriented error estimation, a balance of discretization and it-
eration errors was proposed for eigenvalue problems in [21]. Finally, in [22], the authors proposed goal-oriented a
posteriori error estimator for problems discretized with mixed finite elements and multiscale domain decomposition
that separated the contributions of the discretization of the subdomains from the contribution of the mortar interface.

In this paper, we employ classical extractor techniques [23,24,9], which leads to the definition of an adjoint problem
which is solved at the same time as the forward problem using a block Krylov algorithm [25]. Thanks to [11,16] we
compute guaranteed upper and lower bounds of the quantity of interest at each iteration with the separation of the two
sources of error for each problem (forward and adjoint), which enables us to drive the iterative solver by the error on
the quantity of interest.

Moreover, since we consider quantities of interest defined on small supports, the adjoint problems have very local-
ized solution. A simple strategy to improve the quality of the estimation is then to better the resolution of the adjoint
problem either with a locally refined mesh [26] or using the partition of unity method and handbook techniques [27].
We show that within the framework of domain decomposition methods, it is possible to enrich or refine the kinematic
of selected subdomains without impairing the exactness of the bound nor the ease of computation even if a certain
incompatibility appears at the interface.

The paper is organized as follows. In Section 2, we present the goal-oriented error estimation within domain decom-
position framework; we propose bounds on quantities of interest that separate the contributions of the discretization
and of the solver. In Section 3, we show that nested interfaces can be employed which simplifies the improvement of
the quality of the bounds by local refinement. Assessments are presented in Section 4 and Section 5 concludes the
paper.

2. Error estimation on quantity of interest in substructured context

2.1. Substructured formulation of the forward and adjoint problems

2.1.1. Reference problems
Let Rd represent the physical space (d = 2 or 3). Let us consider the static equilibrium of a (polyhedral) structure

which occupies the open domain Ω ⊂ Rd and which is subjected to given body force f within Ω , to given traction
force g on ∂gΩ and to given displacement field ud on the complementary part of the boundary ∂uΩ (meas(∂uΩ) ≠ 0).
We assume that the structure undergoes small perturbations and that the material is linear elastic, characterized by
Hooke’s elasticity tensor H. Let u be the unknown displacement field, ε


u


the symmetric part of the gradient of u, σ

the Cauchy stress tensor. In order to evaluate (localized) quantities of interest, we consider an adjoint problem loaded
by a (linear) extractor l̃ with small support. Fields related to the adjoint problem will always be noted with a tilde (for
instance adjoint displacement is ũ).

Let ω ⊂ Ω be an open subset of Ω . We introduce three affine subspaces, one linear space and one positive form:
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• Affine subspace of kinematic admissible fields (KA-fields)

KA(ω) =


u ∈


H1(ω)

d
, u = ud on ∂ω


∂uΩ


. (1)

• Associated linear subspace KA0:

KA(ω) = KA0(ω) =


u ∈


H1(ω)

d
, u = 0 on ∂ω\∂gΩ


. (2)

• Affine subspace of statically admissible fields (SA-fields) for the forward problem:

SA(ω) =


τ ∈


L2(ω)

d×d

sym
; ∀v ∈ KA0(ω),

ω

τ : ε

v


dΩ =


ω

f · vdΩ +


∂gΩ


∂ω

g · vd S = l(v)


. (3)

We note l the linear form which gathers the loads of the forward problem.
• Affine subspace of statically admissible fields (SA-fields) for the adjoint problem:

SA(ω) =


τ ∈


L2(ω)

d×d

sym
; ∀v ∈ KA0(ω),


ω

τ : ε

v


dω = l̃(v)


. (4)

• Error in constitutive equation

eC Rω (u, σ ) = ∥σ −H : ε

u

∥H−1,ω (5)

where ∥x∥H−1,ω =


ω


x : H−1 : x


dω.

The forward and adjoint problem set on Ω can be formulated as:

Find


uex , σ ex


∈ KA(Ω)× SA(Ω) such that eC RΩ (uex , σ ex

) = 0 (6)

Find
uex ,σ ex


∈ KA0(Ω)× SA(Ω) such that eC RΩ (uex ,σ ex

) = 0. (7)

The solution to these problems, named “exact” solutions, exist and are unique.

2.1.2. Substructured formulation
Let us consider a decomposition of domain Ω in Nsd open subsets Ω (s) such that Ω (s)Ω (s′)

= ∅ for s ≠ s′ and
Ω̄ =


s Ω̄ (s). The interface between subdomains Γ (s,s′)

= Ω̄ (s) Ω̄ (s′) is supposed to be regular enough for traces
of locally admissible fields to be well defined. n is the outer normal vector.

The mechanical problem on the substructured configuration writes:

∀s


u(s)
∈ KA(Ω (s))

σ (s)
∈ SA(Ω (s))

eC R
Ω(s) (u

(s), σ (s)) = 0
and ∀(s, s′)


tr(u(s)) = tr(u(s′)) on Γ (s,s′)

σ (s)
· n(s)

+ σ (s′)
· n(s′)

= 0 on Γ (s,s′).
(8)

We assume the same domain decomposition is used for the forward and adjoint problems. The adjoint problem satisfies
the same type of substructured formulation: the fields u (respectively u) and σ (resp. σ ) are globally admissible if

(u(s), σ (s)) (resp. (u(s),σ (s))) are kinematically and statically admissible inside each Ω (s) and if the displacements are
continuous and tractions balanced on interfaces. The set of fields u (oru) defined on Ω such that they are kinematically
admissible inside each domain Ω (s) without interface continuity is a broken space which we note KA(


Ω (s)) and

KA0(


Ω (s)). Similarly, we denote SA(


Ω (s)) the broken space of statically admissible fields inside subdomains.

Remark. The error in constitutive relation is by essence a parallel quantity:

∀u ∈ KA


Ω (s)

, ∀σ ∈ SA


Ω (s)


, eC RΩ (u, σ ) =


s

e2
C R

Ω(s)
(u(s), σ (s)). (9)
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2.2. Finite element approximation for the forward and adjoint problems

Both forward and adjoint problems are solved with a finite element approximation. Note that the mesh used to
solve the adjoint problem can be completely different from the mesh used for the forward problem. We detail the
finite element approximation for the forward problem (the principle is the same for the adjoint problem).

2.2.1. Global form
We associate with the mesh of Ω the finite-element subspace KAH (Ω). The finite element approximation consists

in searching:

u H ∈ KAH (Ω), σ
H
= H : ε


u H



Ω

σ
H
: ε

vH


dΩ =


Ω

f · vH dΩ +


∂gΩ
g · vH d S = l(vH ), ∀vH ∈ KA0

H (Ω). (10)

We introduce the matrix ϕ
H

of shape functions which form a basis of KAH (Ω) and the vector of nodal unknowns u.
Therefore, we have u H = ϕ

H
u and obtain the following linear system:

Ku = f (11)

where K is the (symmetric positive definite) stiffness matrix and f is the vector of generalized forces (which includes
imposed displacement).

2.2.2. Substructured form
For both problems, we assume that the mesh of Ω and the substructuring are conforming. This hypothesis implies

that each element only belongs to one subdomain and nodes are matching on the interfaces. Each degree of freedom
is either located inside a subdomain (Subscript i) or on its boundary (Subscript b).

Let t(s) be the discrete trace operator, so that u(s)
b = t(s)u(s). Let us introduce the unknown nodal reaction on the

interface λ(s), the equilibrium of each subdomain writes:

K(s)u(s)
= f(s) + t(s)

T
λ(s). (12)

Let (A(s)) and (B(s)) be the primal and dual assembly operator so that the discrete counterpart of the interface
admissibility equations is:


s

B(s)t(s)u(s)
= 0

s
A(s)λ(s)

= 0.
(13)

Note that in the case when Subdomain s has not enough Dirichlet boundary conditions then the reaction has to
balance the subdomain with respect to rigid body motions. Let R(s) be a basis of ker(K(s)), we have:

R(s)T
(f(s) + t(s)

T
λ(s)) = 0. (14)

2.2.3. Domain decomposition solvers
First, let us briefly present the two classical domain decomposition solvers BDD and FETI (see Algorithm 2 with

for now M = N = I for BDD and [16] for FETI, see also [1] and its bibliography for more details). In BDD solver,
a unique interface displacement is introduced so that the continuity of displacement is automatically verified. Using
the primal Schur complement, the problem can be rewritten with interface quantities. In FETI solver, a unique set of
nodal forces on the interface is introduced so that the balance of forces is verified. The dual Schur complement allows
to write the problem with interface quantities.
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Then, the resolution of interface problem is based on iterative Krylov solver, namely a preconditioned conjugate
gradient. The classical preconditioners make use of scaled assembling operators (Ã(s)) and (B̃(s)) solutions of
equations [28,29]:

s
A(s)Ã(s)T

= I and


s
B(s)B̃(s)T

= I. (15)

During the algorithm, two types of mechanical problems are solved locally (on each subdomain): problems with
Dirichlet conditions on the interface (subscript D) and problems with Neumann conditions on the interface (subscript
N). They correspond to the following procedures:

(λ
(s)
D , u(s)

D ) = SolveD(u(s)
b , f(s)):

K(s)u(s)
D = f(s) + t(s)

T
λ

(s)
D

t(s)u(s)
D = u(s)

b

(u(s)
N ) = SolveN (λ

(s)
N , f(s))

K(s)u(s)
N = f(s) + t(s)

T
λ

(s)
N

where (λ
(s)
N )s satisfy Eq. (14)

When developing these methods, we get:

(u(s)
D )i = K(s)

i i
−1 

f(s)i −K(s)
ib u(s)

b


and (u(s)

D )b = u(s)
b

λ
(s)
D = S(s)u(s)

b − f(s)b +K(s)
bi K(s)

i i
−1

f(s)i

u(s)
N = K(s)+


f(s) + t(s)

T
λ

(s)
N


where S(s)

=


K(s)

bb −K(s)
bi K(s)

i i
−1

K(s)
ib


is the well-known Schur complement matrix, and K(s)+ is a pseudo-inverse

of K(s). Thanks to projector (P1) and initialization (method Initialize), the Neumann problems are well-posed
(see [1]).

If the forward and adjoint problems are approximated on the same mesh, they share the same stiffness matrix
and they can be solved simultaneously using a block-conjugate gradient. In Algorithm 2, we use capital letter to note
blocks of forward/adjoint vectors: typically U = [u, ũ], same notation holds for the residual R = [r, r̃], preconditioned
residual Z = [z, z̃], search directions W and Q; α is a 2 × 2 matrix. One has to pay attention to the potential (yet
unlikely) singularity of the 2× 2 matrix (QT W) which needs to be inverted.

2.2.4. Description of admissible fields
At every iteration of the solver, a totally parallel computation of the following fields is possible [11]:

• u D = (u(s)
D )s ∈ KA(Ω) andu D = (u(s)

D )s ∈ KA0(Ω): globally admissible displacement fields, (λ
(s)
D ,λ(s)

D ) are the
associated nodal reaction which are not balanced before convergence.

• uN = (u(s)
N )s ∈ KA(


Ω (s)) and uN = (u(s)

N )s ∈ KA0(


Ω (s)): displacements associated to a given balanced

Neumann condition λ
(s)
N (resp.λ(s)

N ), they are not necessarily continuous across interfaces.

• σ (s)
N
= H : ε


u(s)

N


: the stress field associated to u(s)

N . It can be employed (with additional input λ
(s)
N ) to build stress

fields σ̂
(s)
N

which are statically admissible σ̂
N
= (σ̂

(s)
N

)s ∈ SA(Ω). Same property holds for the adjoint problem,

we can build ̂σ
N
= (̂σ (s)

N
)s ∈ SA(Ω).

As a consequence, for both forward and adjoint problems, kinematically displacements fields and statically stress
fields are available even if the solver is not converged. Those fields are used to compute global error estimation for
both problems. Indeed, we have the following guaranteed upper bounds which can be computed in parallel [11]:

|||uex − u D|||Ω 6 eC RΩ (u D, σ̂
N
)

|||uex −u D|||Ω 6 eC RΩ (u D,̂σ
N
)

(16)

where |||x |||Ω = ∥ε

x

∥H−1,Ω .



V. Rey et al. / Comput. Methods Appl. Mech. Engrg. 287 (2015) 212–228 217

2.3. Error estimation of quantities of interest

As said earlier the adjoint problem is meant to extract one quantity of interest in the forward problem. Let
Iex = l̃(uex ) be the unknown exact value of the quantity of interest. l̃(u D) is an approximation of this quantity of
interest.

2.3.1. Upper and lower bounds with separated contributions
We demonstrate two results which provide upper and lower bounds on the quantity of interest, as a product of error

estimates on the forward and adjoint problems with, for each of these factors, a separation of contributions of the
solver and of the discretization.

Property 1. Using notation of Algorithm 2, we have

|Iex − l̃(u D)− IH H,1| 6


rT z+ eC RΩ (uN , σ̂
N
)
 rTz+ eC RΩ (uN ,̂σ

N
)


(17)

with

IH H,1 =


Ω


σ̂

N
−Hε


u D


: ε
u D


dΩ . (18)

Proof. This result is a direct application of the results demonstrated in [30,31]:

|Iex − l̃(u D)− IH H,1| 6 eC RΩ (u D, σ̂
N
)eC RΩ (u D,̂σ

N
) (19)

with IH H,1 given in (18). The separation between the sources of error is obtained using the triangular inequality and
Lemma 2 presented in [16] (which proves the equality |||uN − u D|||Ω =

√
rT z), it slightly improves the result given

in remark 25 of [16]:

eC RΩ (u D, σ̂
N
) = ∥σ̂

N
−H : ε


u D


∥H−1,Ω

= ∥σ̂
N
−H : ε


uN


+H : ε


uN − u D


∥H−1,Ω

6 ∥σ̂
N
−H : ε


uN


∥H−1,Ω + |||uN − u D|||Ω

6 eC RΩ (uN , σ̂
N
)+


rT z. � (20)

The quantity
√

rT z (respectively
√rTz) is a measure of the residual of the forward (resp. adjoint) problem: it

corresponds to a pure algebraic error. The quantity eC R
Ω(s) (uN , σ̂

N
) (resp. eC R

Ω(s) (uN ,̂σ
N
)) is a parallel estimate

of the discretization error of the forward (resp. adjoint) problem. As a consequence, we can define a new stopping
criterion for the solver: the idea is to stop iterations when the algebraic error becomes negligible in comparison with
the discretization error. This new stopping criterion is described in alg. 1.

The objective being to have the norm of the residual α times smaller than the estimation of the discretization error
for both problems (α = α = 10 is a typical value), the coefficient β = β (typically 2) takes into account the small
variation of the estimate e ande of the discretization error along iterations.

A second (twice better) bound can be derived in a similar way using another result of [30,31].

Property 2.

|Iex − l̃(u D)− IH H,2| 6
1
2
(


rT z+ eC RΩ (uN , σ̂
N
))(
rTz+ eC RΩ (uN ,̂σ

N
)) (21)

with

IH H,2 =
1
2


Ω


σ̂

N
−Hε


u D


: H−1

:

̂σ
N
+Hε

u D


dΩ . (22)
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Algorithm 1: DD block-solver with adapted stopping criterion

Set α > 1, β > 1,α > 1 and β > 1;

Initialize, get (U(s)
N , 3

(s)
N , R, Z);

Estimate discretization error for reference problem e2
=


s e2
C R

Ω(s)
(u(s)

N , σ̂
(s)
N

) and adjoint problem

e2
=


s e2
C R

Ω(s)
(u(s)

N ,̂σ (s)

N
);

while
√

rT z > e/α and
√rTz >e/α do

while
√

rT z > e/(αβ) and
√rTz >e/αβ do

Make Alg. 2 iterations, get (U(s)
N , 3

(s)
N )

end

Update error estimators e2
=


s e2
C R

Ω(s)
(u(s)

N , σ̂
(s)
N

) ande2
=


s e2
C R

Ω(s)
(u(s)

N ,̂σ (s)

N
) ;

end

2.3.2. Properties of IHH,1

If the forward and adjoint problems share the same mesh, the quantity IHH,1 can be rewritten in terms of quantity
on the interface, which simplifies its evaluation:

Property 3.

IH H,1 =


s
λD

(s)T
t(s)u(s)

D . (23)

Proof. The forward problems verified by u D ∈ KA(Ω) and uex ∈ KA(Ω) with a testing fieldu D ∈ KA0(Ω) read:
s


Ωs

ε


u(s)
D


: H : ε

u(s)
D


dΩ =


s

l(s)(u(s)
D )+


s

λD
(s)T

t(s)u(s)
D (24)


s


Ωs

ε


u(s)
ex


: H : ε

u(s)
D


dΩ =


s

l(s)(u(s)
D )+


s


Γ (s)

(σ
ex
· n(s)) ·u(s)

D ds. (25)

Sinceu D = (u(s)
D )s ∈ KA0(Ω) and uex is the exact solution, we have:

s


Γ (s)

(σ
ex
· n(s)) ·u(s)

D ds = 0 (26)

while since σ̂
N

is statically admissible and (u(s)
D )s ∈ KA0(Ω), we have:

IH H,1 =


Ω


σ̂

N
−Hε


u D


: ε
u D


dΩ =


Ω


σ

ex
−Hε


u D


: ε
u D


dΩ . (27)

Therefore, by subtracting (24) from (25), we obtain (23). �

When the solver has reached convergence, if the meshes of the forward and adjoint problems are identical, the term
IH H,1 is equal to zero (as a consequence of the Galerkin orthogonality). Thanks to the new expression of IH H,1, we
can prove the following property.

Property 4. Using a BDD solver, at each iteration, IH H,1 = 0.

Proof. Using the notation of BDD’s algorithm (alg. 2 with M = N = I), we have:

IH H,1 = rTu. (28)

The iterations of the block-CG can be defined by the following Galerkin scheme [32,33]:
Ui ∈ U0 +Ki
Ri ⊥ Ki

(29)
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Fig. 1. Substructuring.

Table 1
Substructured and sequential goal-oriented error estimations.

Case e e IH IHH,2
1
2 ee Iex

Sequential 2.417 10.23 2.916 3.305× 10−4 12.36 2.916
Substructured 2.418 10.23 2.916 3.858× 10−4 12.37 2.916

where U = [u, ũ], R = [r, r̃], and Ki is the Krylov subspace associated with the preconditioned operator and the
initial block of residuals. This property implies that

IH H,1 = rTu = rT
0u0. (30)

In order to prove the nullity of this term, one has to look more in detail at BDD’s initialization. We refer to [1] and
simply recall that r0 ∈ range(PT

1 ) whileu0 ∈ ker(P1). �

2.4. Assessment

Let us consider a rectangular linear elastic structure Ω = [−3l; 3l] × [−3l; 3l] with homogeneous Dirichlet
boundary conditions. Young modulus is 1 Pa and Poisson coefficient is 0.3. The domain is subjected to a polynomial
body force such that the exact solution is known:

uex = (x + 3l)(x − 3l)(y + 3l)(y − 3l)

(y − 3l)2ex + (y + 3l)ey


.

The quantity of interest is the average of the normal stress in the direction ey in a small square of side l/10 centered
at the origin.

l̃(u) =
1

mes(ω)


ω

(ey ⊗ ey) : ε

u


dω. (31)

The mesh is made out of first order Lagrange triangles, which leads to 2352 degrees of freedom. As shown in Fig. 1
the structure is decomposed into 9 regular subdomains.

We solved the problem with a BDD solver (primal approach). We used the Element Equilibration Technique [34]
to build statically admissible stress fields; each elementary problem was solved using an interpolation of degree 4. For
the sake of simplicity, we note: e = eC RΩ (uN , σ̂

N
) ande = eC RΩ (uN ,̂σ

N
). The results in Table 1 are given when the

solver is converged (when the residual of both forward and adjoint problem are negligible with respect to the loads);
they show that the error estimation in a substructured context is as efficient as in a sequential context. We recall that
the slight difference is due to the fact that the static admissible fields are not identical in sequential and in domain
decomposition methods.

The plots on Fig. 2 show the evolution of the two contributions to the bound during the iterations of the conjugate
gradient. We observe that the discretization error is almost constant whereas the algebraic error decreases along the



220 V. Rey et al. / Comput. Methods Appl. Mech. Engrg. 287 (2015) 212–228

Fig. 2. Error estimates with separation of sources.

iterations. On that example after 6 iterations, the solver errors of both forward and adjoint problems are negligible
with respect to the contribution of the discretization, extra iterations are then useless, they do not improve the quality
of the approximation.

3. Improvement of the bound by local refinement

3.1. Motivation

The upper bounds obtained in Properties 1 and 2 always involve the product between the error estimators of the
forward and adjoint problem. Accordingly increasing the quality of either (or both) the forward or the adjoint problems
necessarily improves the bounds. For instance, since the solution of the adjoint problem is highly localized, it is often
easier to better its estimation, either by mesh refinement or by the injection of a priori knowledge [35,36,26,27].

Adapting a mesh, even for a local quantity of interest, is a global problem: simple algorithms like the one based
on bisection [37] propagate on the whole domain; parallel remeshing involves exchanges between neighbors (and
iterations if good load balance is also wished) [38]. Enrichment also implies integrating functions on parts of the
domain. In this section, we try to benefit the domain decomposition in order to simplify these procedure. The idea is
to improve the approximation only on the subdomains which most contribute to the estimators. We show that a class
of adaptation algorithms can be realized completely locally without impairing the exactness and the computability of
the bound: algorithms which modify the boundary of the treated subdomains only by adding new degrees of freedom.
This leads to what we call “nested interfaces” which means that the trace of the initial (coarse) kinematic is a subspace
of the trace of the new (fine) kinematic.

Typically, bisections stopped at the boundary of the subdomains belongs to that class of algorithms, so do hier-
archical h and p refinement and most enrichment methods. In the examples, for simplicity reasons, we use uniform
h-refinement in the subdomains. Of course such procedures open the question of balancing the computational load
between subdomains, which will be the subject of future work. Anyhow, a classical answer is to split the structure
into many subdomains and to randomly attribute several subdomains to each computing unit with the hope that the
to-be-refined subdomains will be evenly distributed.

The rest of the section is organized as follows. In Section 3.2 we show how a master/slave algorithm enables us
to treat nested interfaces in order to preserve the ability to build kinematic and static admissible fields. This property
would be much more difficult to conserve with mortar methods [39,40]. The algorithm is presented in Section 3.3;
we choose to solve simultaneously the forward and the adjoint problems on the locally refined mesh, since there is no
real-extra cost in solving both problems at the same time. In Section 3.4, we verify that the chosen strategy enables us
to improve the bound on the estimation.

3.2. Interpolation of displacements and forces

We assume that after a first resolution, some subdomains have been locally refined (either in h or p sense) or
enriched, so that new degrees of freedom have been inserted on the boundary of the domain whereas former boundary
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Fig. 3. Titre.

nodes have been preserved. Fig. 3 presents a H/2 refinement in the case of 2 subdomains. In order to keep the
ability of reconstructing globally admissible fields, we decide the (coarse) interface to be the master when imposing
displacements or forces on subdomains, and we keep the assembling operators unchanged. We thus only need to
derive the interpolation matrix N(s) which defines local (fine) displacements u(s)

F from interface (coarse) displacement

u(s)
C = A(s)T

U: u(s)
F = N(s)u(s)

C ; and the interpolation matrix M(s) which defines local (fine) nodal forces λ
(s)
F from

interface (coarse) forces λ
(s)
C = B(s)T

Λ: λ
(s)
F =M(s)λ

(s)
C .

Let ϕ(s)
C

and ϕ(s)
F

be the matrices of the coarse and fine shape functions, so that displacements write u(s)
C = ϕ(s)

C
u(s)

C

on the interface and u(s)
F = ϕ

F
u(s)

F on the boundary. Let X(s)
F be the coordinates of the fine nodes, we have

ϕ(s)
F

(X(s)
F ) = I. Imposing the continuity of the displacement writes:

u(s)
C = ϕ(s)

C
u(s)

C = ϕ(s)
F

u(s)
F = u(s)

F

⇔ ϕ(s)
C

(XF )(s)u(s)
C = u(s)

F ,

which defines the interpolation matrix for displacement:

N(s)
= ϕ(s)

C
(X(s)

F ). (32)

Matrix N(s) simply imposes extra fine nodes to follow the displacement imposed by the coarse discretization.
The generation of statically admissible fields requires an algorithm, noted G in [11], which defines a continuous

distribution of traction t from nodal reactions: t = Gλ. Then transfer operator M(s) must ensure that the same
continuous tractions are created from the coarse and the fine information: t (s)F = t (s)C . In other words G F M(s)

= GC .
Algorithm G in [11] consists in finding a distribution of traction on the same finite element subspace as the

displacement, under the constraint to preserve the mechanical work:

t (s)C = ϕ(s)
C


G(s)

C

−1
λ

(s)
C with G(s)

C =


Γ

ϕ
C

(s)T
ϕ(s)

C
dΓ

t (s)F = ϕ(s)
F


G(s)

F

−1
λ

(s)
F with G(s)

F =


Γ

ϕ
F

(s)T
ϕ(s)

F
dΓ .

(33)

G(s)
C and G(s)

F are the L2(Γ ) mass matrices of the coarse and fine interpolations. Because of the chosen interpolation,

it is sufficient to satisfy the relationship t (s)F = t (s)C on the fine nodes, which leads to:

M(s)
= G(s)

F N(s)(G(s)
C )−1. (34)

Remark. We also have the following classical expressions for matrices N(s) and M(s):

N(s)
=


G(s)

F

−1
G(s)

FC

M(s)
= G(s)

FC


G(s)

C

−1

 with G(s)
FC =


Γ

ϕ
F

(s)T
ϕ(s)

C
dΓ . (35)
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When testing the balance of tractions in the interface displacements we obtain the classical preservation of the
mechanical work which writes:

N(s)T
M(s)
= I. (36)

Remark. Of course, for unchanged (non-refined) subdomains, we have N(s)
=M(s)

= I.

3.3. FETI and BDD algorithms with nonconforming interfaces

The standard BDD algorithm (see for instance Algorithm 1 in [16]) is barely modified, only the assembling
operators change depending if they manipulate displacement or forces:

• BDD assembling operator becomes A(s)N(s)T
,

• BDD scaled assembling operator becomes Ã(s)M(s)T
.

The final algorithm is summarized in Algorithm 2.

Algorithm 2: Block-BDD with incompatibility, unknown U = [u, ũ]

U = Initialize(F(s)) ;

(3
(s)
D , U(s)

D ) = SolveD(N(s)A(s)T
U, F(s));

Compute residual R =


s A(s)N(s)T
3

(s)
D ;

Define local traction δΛ(s)
=M(s)Ã(s)T

R ; // 3
(s)
N = 3

(s)
D − δΛ(s)

δu(s)
= SolveN (δΛ(s), 0) ; // U(s)

N = UD
(s)
− δU(s)

Preconditioned residual Z =


s Ã(s)M(s)T
δU(s) ;

Search direction W = P1Z;

while
√

RT Z > ϵ do
(δΛ(s)

D , δU(s)
D ) = SolveD(N(s)A(s)T

W, 0);

Q =


s A(s)N(s)T
δΛ(s)

D ;
α = (QT W)−1(RT Z);

U← U+Wα ; //
U(s)

D ← UD
(s)
+ δU(s)

D α

3
(s)
D ← 3D

(s)
+ δΛ(s)

D α

R← R−Qα;

δΛ(s)
=M(s)Ã(s)T

R ; // 3
(s)
N = 3

(s)
D − δΛ(s)

δU(s)
= SolveN (δΛ(s), 0) ; // U(s)

N = UD
(s)
− δU(s)

Z =


s Ã(s)M(s)T
δU(s)

b ;
W← P1Z−W(QT W)−1(QT P1Z)

end

The preservation of work (36) together with the definition of the scaling operators (13) ensure that the reconstructed
fields satisfy the required continuity or balance on the interface. More precisely in the BDD algorithm, the
displacement is built as a continuous field, whereas the nodal forces Λ(s)

N are balanced on the interface because:
s

A(s)N(s)T
Λ(s)

N =


s
A(s)N(s)T

(Λ(s)
D − δΛ(s))

=


I−


s

A(s)N(s)T
M(s)Ã(s)T


R

=


I−


s

A(s)Ã(s)T


R = 0. (37)



V. Rey et al. / Comput. Methods Appl. Mech. Engrg. 287 (2015) 212–228 223

(a) Coarse mesh. (b) Locally refined mesh.

Fig. 4. Effect of local refinement (map of the error estimator) on the adjoint problem.

Table 2
Comparison between conforming and non conforming cases, Iex = 2.916.

Case e e IH IHH,2
1
2 ee #dof

Coarse mesh 2.418 10.23 2.916 3.8575× 10−4 12.37 8,738
Fine mesh 1.216 7.020 2.916 −9.695× 10−4 4.268 34,988

Refined central SD 2.404 7.020 2.9169 3.8575× 10−4 8.438 12,122

Remark. Similarly, FETI algorithm can be derived from Algorithm 2 in [16] by simply replacing the assembling
operators:

• FETI assembly operator becomes B(s)M(s)T
,

• FETI scaled assembling operator becomes B̃(s)N(s)T
.

Remark. When the solver is converged, because of the incompatible meshes, the displacement fields (u(s)
D )s and

(u(s)
N )s are no longer identical.

3.4. Assessment

Let us reuse the example of previous section. Fig. 4a plots the error map of the adjoint problem on a first coarse
mesh, it is essentially localized within the central subdomain; where the loading of the adjoint problem is defined.

Accordingly, from the point of view of the adjoint (resp. forward) problem, we need to refine the mesh of the
central subdomain. Three cases are considered: two with conforming meshes (i) a coarse mesh (given H ) (ii) a fine
mesh (h = H/4), and one with non-conforming meshes due local refinement only in the central subdomain (h = H/4,
see Fig. 5 for a schematic presentation with a coarser mesh than in actual computations). In all cases, we compute the
error estimator at convergence of the solver. The number of Conjugate Gradient iterations is identical for the 3 meshes
(9 iterations). The results are summarized in Table 2. When the central subdomain is refined, the error estimator for
the adjoint problem decreases while the error estimator of the forward problem remains more or less unchanged. As
a consequence, the use of local refinement (independently by subdomains) enables us to obtain improved bounds on
the quantity of interest (−32%) with a simple implementation and less degrees of freedom (+38% #dof) than would
be required by the full fine mesh (+300% #dof for a −65% decrease of the estimator).

Fig. 4b plots the map of error for the adjoint problem when only the central subdomain is refined. The source of
error due to the non-conforming interface (boundary of the central subdomain) is clearly negligible.

Of course, the use of locally refined meshes is questionable if the zone of high contribution to the error is close to a
non-matching interface: in that case the driving of the fine kinematic by the coarse interface is an extra source of error.
To evaluate that problem, we study how the efficiency of the local refinement is altered by the distance d between the
support of the quantity of interest ω = [− l

10 − d; l
10 − d] × [− l

10 ;
l

10 ] and the interface Γ .
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Fig. 5. Hierarchically refined mesh on the central subdomain.

Fig. 6. Influence of the distance d .

For each configuration (characterized by the distance d) we compute the relative discretization error (discretization
error divided by the energy of the finite element solution) of the adjoint problem ρHh (resp. ρh) when h = H/4 only
in the central subdomain (resp. on all subdomains). Fig. 6 plots the ratio ρHh/ρh as a function of the distance d/d0
(where d = d0 corresponds to the quantity of interest at the center of the subdomain). The quality of the refined
estimator is degraded only when d/d0 < 10−1 which corresponds to a quantity of interest very close to the interface.
Thus the idea to conduct local refinements remains valid in a wide range of configurations.

4. Numerical experiments

The aim of these assessments is to show how easily the error bound can be improved by the refinement strategy
described in Section 3.

We always use the stopping criterion proposed in Section 2: iterations are stopped when the algebraic error becomes
negligible (10 times smaller) with respect to the contribution of the discretization estimated at the first iteration, for
both forward and adjoint problems. We verify that the discretization error computed with the new interface fields
barely varies, as could be expected from [16].

After a first resolution on a coarse mesh, we analyze the contributions of subdomains to the forward and adjoint
error estimator using the following measures:
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Fig. 7. Loading of forward (blue) and adjoint problems (orange). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 3
Performance of local refinement on the Γ -shaped structure.

Mesh e e IH IHH,2
1
2 ee

Uniform 33.528 0.20977 −0.39157 −0.0010045 3.5165
Locally refined 18.464 0.072916 −0.39006 −0.00050892 0.67316

η(s)
=

eC R
Ω(s) (u

(s)
N , σ̂

(s)
N

)
s

e2
C R

Ω(s)
(u(s)

N , σ̂
(s)
N

)

and η(s)
=

eC R
Ω(s) (u(s)

N ,̂σ (s)

N
)

s
e2

C R
Ω(s)

(u(s)
N ,̂σ (s)

N
)

. (38)

From that information we deduce h-refinement strategies and evaluate their ability to improve the estimator.

4.1. The Gamma-shaped structure

We consider a Gamma-shaped structure clamped on its base and submitted to prescribed traction and shear on the
upper-right side. The problem is linear elastic with unit Young modulus and 0.3 Poisson coefficient. The initial mesh
is made out of first order triangles. The structure is decomposed into 7 domains and we use the classical BDD solver.
The quantity of interest is the mean value of the strain εyy over the region ω located in the seventh subdomain, as
illustrated in Fig. 7. We build statically admissible stress fields with the Flux-free technique [41,14]. Each star-patch
problem is solved with a fourth order interpolation.

The contributions η(s) andη(s) to the error estimator on the initial mesh are presented in Fig. 8a. We observe that
the major contribution to the error for the forward problem is located in the fifth subdomain (because of the corner).
The objective is to refine this domain in order to obtain a level of error comparable to subdomain 1 (which is the
second largest contributor). It implies to divide the error in the fifth subdomain by 2.8. The convergence in this subdo-
main is driven by the corner singularity. Therefore, we decide to perform three hierarchical h-refinements in the fifth
subdomain. The quantity of interest being localized in Subdomain 7, we also process 3 hierarchical h-refinements in
that subdomain.

As expected, we can see in Fig. 8b that the forward error in Subdomain 5 and Subdomain 1 are nearly the same
on the new mesh. We also observe that the error of the adjoint problem has decreased (due to the refinement of
Subdomain 7). In Table 3, we sum up the global values of discretization errors, the quantities IH and IHH,2.

4.2. The pre-cracked structure

We now consider the pre-cracked structure decomposed into 16 subdomains as illustrated in Fig. 9. The
displacements at the base of the structure and on the bigger hole are imposed to be zero. The upper-left part and
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(a) Initial mesh. (b) Locally refined mesh.

Fig. 8. Distribution of the error estimator within subdomains.

Fig. 9. Loading of forward (blue) and adjoint problems (orange), domain decomposition. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

the second hole are subjected to a constant unit pressure. The quantity of interest is the mean of the stress component
σxx on a region ω close to the crack. In Fig. 9, the loading of the reference problem is in blue and the loading of adjoint
problem is in orange. We used the FETI algorithm (dual approach) to solve the interface problem and the statically
admissible stress fields are built using the Flux-free technique [41,14] with fourth order interpolation for problems on
star-patches.

In Fig. 10a, we observe that the discretization errors of the forward and adjoint problem are quasi totally located
in the sixth subdomain. Therefore, we perform hierarchical refinement in this subdomain in order to reach a level of
forward error comparable to the second larger contributor (Subdomain 8). That corresponds to dividing the error in
Subdomain 6 by a factor 3. Because of the singularity in the subdomain, convergence is expected to evolve like

√
h

so we perform 4 hierarchical refinements (each coarse element edge is divided into 16 fine edges).
As can be seen in Fig. 10b, after local refinement the contributions of Subdomains 6 and 8 to the forward error are

equivalent, and the adjoint error also decreased, as expected. The global performance is summed up in Table 4. In the
end, the bound on the estimator on the quantity of interest was decreased by a factor 3.
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(a) Initial mesh. (b) Locally refined mesh.

Fig. 10. Distribution of error within subdomains.

Table 4
Performance of local refined for the cracked structure.

Mesh e e IH IHH,2
1
2 ee

Uniform 26.215 0.98905 2.4915 3.1935 12.964
Locally refined 16.662 0.51378 3.2165 0.086055 4.2803

5. Conclusion

In this article, we extended two classical results of goal-oriented error estimation to problems solved by domain
decomposition methods. We solved simultaneously both forward and adjoint problems on the same mesh using a
block conjugate gradient algorithm and proposed a fully parallel procedure to recover admissible fields and estimate
the error on the quantity of interest. Moreover, the error bounds separated the contribution of the discretization from the
contribution of the iterative solver which lead to defining of a stopping criterion of the iterative solver that prevented
oversolving.

We also showed that the method could be easily extended to the case of locally enriched kinematics (using h or
p refinements or dedicated enrichments) only constrained to contain the original coarse kinematic on the boundary
of subdomains. This property provided a simple parallel way to improve estimators as soon as the singularities (local
quantity of interests, crack tips, etc.) were not too close to the interface. The concepts were validated on academic
examples using the most basic h-refinement strategy. Of course using ad-hoc enrichment instead of brutal h-refinement
should improve the performance of the method.

Future work will focus on exploiting the fact that the shape of the interface is preserved by the enrichment to define
acceleration strategies, and on defining original strategies to balance the computational load between subdomains for
the resolution of the refined problem.
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