منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی تحقیق درباره الگوریتم پیشرفته ماشین بردار پشتیبانی برای طبقه بندی کلان داده - IEEE 2018

عنوان فارسی
تحقیق درباره الگوریتم پیشرفته ماشین بردار پشتیبانی (SVM) برای طبقه بندی کلان داده
عنوان انگلیسی
Research on SVM improved algorithm for large data classification
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
5
سال انتشار
2018
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
پایگاه
اسکوپوس
کد محصول
E10335
رشته های مرتبط با این مقاله
مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط با این مقاله
الگوریتم ها و محاسبات، هوش مصنوعی، مدیریت سیستم های اطلاعاتی
مجله
کنفرانس بین المللی تحلیل کلان داده - IEEE 3rd International Conference on Big Data Analysis
دانشگاه
College of International Finance & Bank - Liaoning University of Science and Technology - Anshan LiaoNing
کلمات کلیدی
ماشین بردار پشتیبانی (SVM)؛ کلان داده؛ چند طبقه بندی؛ فاصله اقلیدس؛ تابع هسته انتگرالی شعاعی
doi یا شناسه دیجیتال
https://doi.org/10.1109/ICBDA.2018.8367673
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


In view of the two problems of the SVM algorithm in processing large data, the paper proposed a weighted Euclidean distance, radial integral kernel function SVM and dimensionality reduction algorithm for large data packet classification. The SVM cannot handle multi classification and time of building model is long. The algorithm solved these problems. The improved algorithm reconstructs the data feature space, makes the boundary of different data samples clearer, shortens the modeling time, and improves the accuracy of classification. The proposed method verified the feasibility and effectiveness with experiments. The experimental results show that the improved algorithm can achieve better results when multi-duplicated samples and large data capacity are used for multi classification.

نتیجه گیری

CONCLUSION


In the paper, a weighted Euclidean distance, the radial product kernel function and SVM algorithm are constructed to solve the problem of large data feature extraction and big data classification. Effective reduction the data sample of establishing the test model through data filtering preprocessing. The number of support vector samples established the test model has decreased in varying degrees. The overall detection accuracy reached the highest after selecting and weighting. It is shown that the selection algorithm can effectively remove the nonsignificant interference samples and improve the generalization of the model. The results show that the class distribution of the weighted samples is more obvious. The training time is significantly shorter. The detection effect is further improved after weighting.


بدون دیدگاه