ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
Background and Purpose. The motor impairments related to gait and balance have a huge impact on the life of individuals with spinocerebellar ataxia (SCA). Here, the aim was to assess the possibility of retraining gait, improving cardiopulmonary capacity, and challenging balance during gait in SCA using a partial body weight support (BWS) and a treadmill. Also, the effects of this training over functionality and quality of life were investigated. Methods. Eight SCA patients were engaged in the first stage of the study that focused on gait training and cardiovascular conditioning. From those, five took part in a second stage of the study centered on dynamic balance training during gait. The first and second stages lasted 8 and 10 weeks, respectively, both comprising sessions of 50 min (2 times per week). Results. The results showed that gait training using partial BWS significantly increased gait performance, treadmill inclination, duration of exercise, and cardiopulmonary capacity in individuals with SCA. After the second stage, balance improvements were also found. Conclusion. Combining gait training and challenging tasks to the postural control system in SCA individuals is viable, well tolerated by patients with SCA, and resulted in changes in capacity for walking and balance.
4. Discussion
This study is the first, to our knowledge, to investigate the feasibility and consequences of the association of gait training and balance challenges using PBWSTT on functionality, cardiopulmonary capacity, and quality of life in SCA individuals. The results demonstrated that the training was feasible and well tolerated by people with SCA. Trends of improvements were found after the gait/conditioning training using PBWSTT in the capacity for walking by increasing the gait performance and the cardiopulmonary capacity of the sample of individuals studied. The dynamic balance training also brought statistically significant improvements in balance. At the end of the gait/conditioning training stage, as expected, improvements were found in gait as measured by DGI. SCA participants were also capable of walking with higher inclination of the treadmill for longer periods of time in the CPET. Probably, several mechanisms play a role in these improvements. The use of task-oriented training and increasing the pace of effort may have been relevant [25–27]. Additionally, the majority of studies with PBWSTT attribute the gait improvements observed to changes in the central pattern generator in different conditions such as Parkinson’s disease, spinal cord injury, and stroke (e.g., Wickelgren [40] and Miyai et al. [41]). Although there was no statistical difference between the VO2 Peak after and before the gait/conditioning training stage it was observed that, in 5 of 8 participants tested, there was a VO2 Peak increment. It was expected since treadmill training has already been associated with cardiopulmonary capacity improvement after stroke and in individuals with coronary artery disease [42, 43]. Moreover, the level of intensity of CPET increased for the group (as suggested by treadmill inclination and CPET duration increments), suggesting an increased correspondent effort during its execution. It may explain the absence of VO2 Peak and Borg improvement for some individuals.