4. Discussion
This study is the first, to our knowledge, to investigate the feasibility and consequences of the association of gait training and balance challenges using PBWSTT on functionality, cardiopulmonary capacity, and quality of life in SCA individuals. The results demonstrated that the training was feasible and well tolerated by people with SCA. Trends of improvements were found after the gait/conditioning training using PBWSTT in the capacity for walking by increasing the gait performance and the cardiopulmonary capacity of the sample of individuals studied. The dynamic balance training also brought statistically significant improvements in balance. At the end of the gait/conditioning training stage, as expected, improvements were found in gait as measured by DGI. SCA participants were also capable of walking with higher inclination of the treadmill for longer periods of time in the CPET. Probably, several mechanisms play a role in these improvements. The use of task-oriented training and increasing the pace of effort may have been relevant [25–27]. Additionally, the majority of studies with PBWSTT attribute the gait improvements observed to changes in the central pattern generator in different conditions such as Parkinson’s disease, spinal cord injury, and stroke (e.g., Wickelgren [40] and Miyai et al. [41]). Although there was no statistical difference between the VO2 Peak after and before the gait/conditioning training stage it was observed that, in 5 of 8 participants tested, there was a VO2 Peak increment. It was expected since treadmill training has already been associated with cardiopulmonary capacity improvement after stroke and in individuals with coronary artery disease [42, 43]. Moreover, the level of intensity of CPET increased for the group (as suggested by treadmill inclination and CPET duration increments), suggesting an increased correspondent effort during its execution. It may explain the absence of VO2 Peak and Borg improvement for some individuals.