The portfolio selection problem is usually considered as a bicriteria optimization problem where a reasonable trade-off between expected rate of return and risk is sought. In the classical Markowitz model the risk is measured with variance, thus generating a quadratic programming model. The Markowitz model is frequently criticized as not consistent with axiomatic models of preferences for choice under risk. Models consistent with the preference axioms are based on the relation of stochastic dominance or on expected utility theory. The former is quite easy to implement for pairwise comparisons of given portfolios whereas it does not offer any computational tool to analyze the portfolio selection problem. The latter, when used for the portfolio selection problem, is restrictive in modeling preferences of investors. In this paper, a multiple criteria linear programming model of the portfolio selection problem is developed. The model is based on the preference axioms for choice under risk. Nevertheless, it allows one to employ the standard multiple criteria procedures to analyze the portfolio selection problem. It is shown that the classical mean-risk approaches resulting in linear programming models correspond to specific solution techniques applied to our multiple criteria model.
1. Introduction
The portfolio selection problem considered is based on a single period model of investment. At the beginning of the period, the investor allocates capital among various securities, assigning a nonnegative weight to each security. During the period, each security generates a random rate of return so that at the end of the period, the capital has been changed by the weighted average of the returns. In selecting security weights, the investor faces a set of linear constraints, one of which is that the weights must sum to one.
Following the seminal work by Markowitz [12], the portfolio selection problem is usually modeled as a bicriteria optimization problem where a reasonable trade-off between expected rate of return and risk is sought. The Markowitz model is frequently criticized as not consistent with axiomatic models of preferences for choice under risk (Bell and Raiffa [1]). Models consistent with the preference axioms are based on the relation of stochastic dominance or on expected utility theory (Levy [9]). The former is quite easy to implement for pairwise comparisons of given portfolios whereas it does not offer any computational recipe to analyze the portfolio selection problem. The latter when used for the portfolio selection problem is restrictive in modeling preferences of investors.
6. Conclusions and further research
Following the pioneering work of Sharpe [18], many attempts have been made to linearize the portfolio selection problem. There were introduced several risk measures which lead to linear programming mean-risk models. In this paper we have developed a multiple criteria linear programming model of the portfolio selection problem. The classical linear programming mean-risk approaches turn out to be specific aggregation techniques applied to our multiple criteria model. The model is based on the preference axioms for the choice under risk. Therefore, by looking for various efficient solutions of the multiple criteria linear program, we are able to identify solutions of the portfolio selection problem which are optimal with respect to various risk averse preferences. Nevertheless, the model allows one to employ the variety of standard multiple criteria procedures to analyze the portfolio selection problem.