دانلود رایگان مقاله مدیریت ریسک کسب مشتری با استفاده از پایگاه داده تعاونی

عنوان فارسی
مدیریت ریسک کسب مشتری با استفاده از پایگاه داده تعاونی
عنوان انگلیسی
Managing Customer Acquisition Risk Using Co-operative Databases
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
18
سال انتشار
2015
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E2421
رشته های مرتبط با این مقاله
مدیریت
گرایش های مرتبط با این مقاله
مدیریت کسب و کار و بازاریابی
مجله
مجله بازاریابی تعاملی - Journal of Interactive Marketing
دانشگاه
بخش بازاریابی، دانشگاه کانتیکت، امریکا
کلمات کلیدی
کسب مشتری، خطر کسب، خطر بدهی های بد، پایگاه داده تعاونی، ایمیل مستقیم، بازاریابی مستقیم، هدف گذاری
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Acquisition of new customers involves both opportunity and risk, and it is important for firms to predict and manage the risks involved in customer acquisition. Despite its importance, the management of customer acquisition risk has not been the subject of much academic research. This paper develops a framework for firms to manage customer acquisition risk using co-operative databases. We illustrate this framework in the context of the optimal selection of customers for direct mail with a ‘buy now, pay later’ payment option when the acquisition risk manifests as bad debt risk. Using data from a large scale direct marketing campaign, we show that our empirical model that incorporates bad debt risk substantially outperforms suboptimal targeting schemes that overlook bad debt risk. We also demonstrate how alleviating bad debt risk is one beneficial outcome of a fairly recent trend in database marketing, namely the emergence of co-operative databases.

نتیجه گیری

Discussion and Conclusions


In this paper we propose a framework to manage customer acquisition risks using co-operative databases. In the empirical context of a direct mail campaign, we analyze the bad debt behavior of consumers and demonstrate the importance of alleviating bad debt risk. Our empirical model that accounts for bad debt risk substantially outperforms the traditional modeling framework that restricts attention to the binomial outcome of non-response vs. response. Our model can be directly applied by marketers to select optimal targets for direct mail. Once they calibrate the model using observed outcomes from a smaller set of consumers or from a similar campaign, they can use the parameter estimates to examine a mailing list and predict how each consumer would respond to the focal campaign.


بدون دیدگاه