ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
۱ ۲ مسائل تک منبعی
۲ ۲ مسائل و مشکلات چند منبعی
۳ شیوه های پاکسازی داده
۱ ۳ تحلیل داده
۲ ۳ تعریف تبدیل داده
۳ ۳ حل تعارض
۴ حمایت ابزاری
۱ ۴ آنالیز داده و ابزارهای فنی مهندسی
۲ ۴ ابزارهای پاکسازی تخصصی
۳ ۴ ابزارهای ETL
۵ نتایج
Data cleaning, also called data cleansing or scrubbing, deals with detecting and removing errors and inconsistencies from data in order to improve the quality of data. Data quality problems are present in single data collections, such as files and databases, e.g., due to misspellings during data entry, missing information or other invalid data. When multiple data sources need to be integrated, e.g., in data warehouses, federated database systems or global web-based information systems, the need for data cleaning increases significantly. This is because the sources often contain redundant data in different representations. In order to provide access to accurate and consistent data, consolidation of different data representations and elimination of duplicate information become necessary. Data warehouses [6][16] require and provide extensive support for data cleaning. They load and continuously refresh huge amounts of data from a variety of sources so the probability that some of the sources contain “dirty data” is high. Furthermore, data warehouses are used for decision making, so that the correctness of their data is vital to avoid wrong conclusions.