ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
ABSTRACT
Accumulating evidence from animal and human research indicate that adult hippocampal neurogenesis plays a key role in cognition. Meanwhile, cognitive decline is well known to associate with ageing-related neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Therefore, prevention of hippocampal neurogenesis reduction should be critical for these diseases. Physical exercise, a potent enhancer of adult hippocampal neurogenesis, has emerged as a potential therapy or an adjunctive therapeutic strategy for cognitive decline. In this review, we discuss the recent findings on hippocampal neurogenesis and the incorporation of new born neurons into the neuronal network in humans and in rodents. By focusing on hippocampal neurogenesis, we illustrate the role and possible mechanisms of physical exercise in cognition preservation.
7. Conclusions and future directions
Neurogenesis in the hippocampus represents a form of morphological and functional plasticity in the mammalian adult brain. Activity-dependent regulation of neurogenesis and experiencedependent participation of adult born DGCs in information processing imply the contribution of adult born DGCs in hippocampus-dependentfunctions. Neurogenesis ablation and IEG labeling methods consistently suggest the involvement of adult born DGCs in learning and memory. Reduction of hippocampal neurogenesis is always accompanied with cognitive decline in diseases such as depression, AD and PD. Improvement of hippocampal neurogenesis induced by exercise benefits some but not all hippocampus-dependent functions. The precise mechanisms of exercise-induced neurogenesis are largely unclear. However, physical exercise may regulate the overall dynamic balance in the neurogenic niche through increasing proliferation of astrocytes and enhancing the secretion of some transmitters, growth factors or neurotrophic factors. The non-invasive imaging techniques have been developed for monitoring hippocampal neurogenesis in humans [24,25], despite their validity and precision await further testing. These techniques pave the ways for us to investigate the functions of hippocampal neurogenesis in living persons under various physiological or pathological conditions, which will hopefully lead to novel diagnoses and therapies for neurological disorders.