دانلود رایگان مقاله اثر مونت موریلونیت در لایه کامپوزیت پروتئین محلول آب ماهی

عنوان فارسی
اثر مونت موریلونیت در لایه کامپوزیت پروتئین محلول آب ماهی به عنوان یک نمونه از مواد بسته بندی زیست تخریب پذیر
عنوان انگلیسی
Effect of montmorillonite in fish water soluble protein composite film as a prototype of biodegradable packaging materials
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
8
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E2115
رشته های مرتبط با این مقاله
زمین شناسی، شیمی
گرایش های مرتبط با این مقاله
سنگ شناسی، زمین شناسی زیست محیطی
مجله
علوم کاربردی خاک رس - Applied Clay Science
دانشگاه
گروه پژوهشی پیشرفته کاربردی مواد پلیمری، دانشکده علم و صنعت، تایلند
کلمات کلیدی
پروتئین محلول در آب ماهی، لایه ترکیبات زیستی، مونت موریلونیت (MT)
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Fish water soluble protein (FWSP) film from the surimi washing process was prepared by solvent casting. The results demonstrated that FWSP-oleic acid had the highest tensile strength (TS) and elongation at break (%E) at 12.11 ± 2.39 MPa and 7.14 ± 3.17% respectively. Water vapor permeability (WVP) of FWSP-oleic acid was higher than FWSP-palmitic acid at 5.27 ± 0.50 × 10−11 g m/m2 s Pa. On the contrary, FWSP-oleic acid had the lowest oxygen permeability (OP) at 2.34 ± 0.14 cm3 mm/m2 d k Pa. FWSP-oleic acid with Mt content 5 g/ 100 g FWSP presented the lowest WVP. High amount of Mt loading resulted in an increase in the WVP and OP. The melting (Tm) temperature of FWSP-oleic acid was ~107 °C but FWSP-stearic acid and FWSP-palmitic acid had two Tm levels were ~73 °C ~ 122 °C and ~88 °C ~ 127 °C, respectively. FWSP-oleic acid with Mt content 5 g/100 g FWSP had the highest Tm level at ~113 °C. The thermal stability of the films increased from ~349 to ~357 °C with the addition of Mt content 20 g/100 g FWSP. The changes observed in the intensity of the bands corresponded to the amine group. It showed that FWSP interacts with Mt.

نتیجه گیری

4. Conclusions


FWSP, by-product from surimi process was utilized to form biocomposite films. Oleic acid resulted in the highest TS and %E at 12.11 ± 2.39 MPa and 7.14 ± 3.67%. Incorporation of Mt at 5% (w/w FWSP) induced upper tensile strength of bio-composite films but lower elongation at break, compare with bio-composite films without Mt. Moreover, oleic acid led to WVP of films higher than palmitic acid at 5.27 × 10−11 ± 5.01 × 10−12 g·m·m−2 ·s−1 ·Pa−1 because the low melting temperature of it had an effect on a high solubility coefficient. WVP of bio-composite films increase when Mt content higher than 10% due to initial crack from phase of Mt agglomeration. The oxygen resistance of the FWSP-oleic acid films was better than for the FWSPpalmitic acid films at 3.19 ± 0.04 g·μm/day·kPa but did not affect OP of FWSP-oleic acid with Mt bio-composite films. Thermal behavior of FWSP-oleic acid was presented both of Tg and Tm but stearic and palmitic acid were shown only Tm because solid state of them restricted Fig. 4. DSC thermograms of FWSP/Mt bio-composite films (a) with plasticizers of oleic, stearic and palmitic acid and (b) at various Mt content. Fig. 5. ATR-FTIR spectra of FWSP films (a) at various plasticizers and (b) at various Mt content. 436 C. Pechyen, S. Ummartyotin / Applied Clay Science 132–133 (2016) 430–437 the mobility of the FWSP polymer chain. Mt content induced Tm increase from 107.44–112.85 °C at 5% of Mt content. ATR-FTIR confirmed Mt reinforcing the FWSP matrix.


بدون دیدگاه