دانلود رایگان مقاله درک توزیع طولانی مدت و فرایند مولد در کارآفرینی

عنوان فارسی
به سمت درک دقیقتری از توزیع های طولانی مدت و فرایند مولد در کارآفرینی
عنوان انگلیسی
Toward a more nuanced understanding of long-tail distributions and their generative process in entrepreneurship
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
7
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E3812
رشته های مرتبط با این مقاله
مدیریت
گرایش های مرتبط با این مقاله
مدیریت کسب و کار و کارآفرینی
مجله
مجله دیدگاه مخاطرات کسب و کار - Journal of Business Venturing Insights
دانشگاه
مرکز استرالیا برای کارآفرینی، دانشگاه فناوری کوئینزلند،استرالیا
کلمات کلیدی
توزیع طولانی مدت، توزیع قدرت قانون، فرآیند زایشی، روش اتصالات، شبیه سازی، روند مخاطرات
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

abstract


Crawford et al.’s (2014, 2015) research on empirical distributions in entrepreneurship has shown that almost all input and outcome variables in entrepreneurship follow highly skewed long-tail distributions. They refer to these as power-law (PL) distributions based on a quantitative PL fitting procedure. However, the generative process of these distributions is still unclear. Building on their research, I cultivate a more nuanced understanding of the long-tail distributions and their plausible generative process in entrepreneurship. In this study, the fitting procedure is applied to new ventures' initial expectations and temporal outcome variables on employment and revenue, including comparisons of fitting results from alternative long-tail models. In conclusion, I find that ventures' less skewed early-stage outcome distributions change into more skewed PL distributions over time, while most expectation distributions do not fit a specific long-tail model. Using a simple simulation, I suggest that a multiplicative process may be a plausible generative mechanism for the transformation.

نتیجه گیری

6. Conclusion


I showed that ventures' less-skewed outcome distributions change into more skewed over time. The simulation results suggest that the random multiplicative process may be a plausible generative mechanism for the transformation. However, in the simulation results, the LN model has better fit than the PL model at every stages (1025 activities), unlike the empirical findings. This result implies that a more complicated mechanism, in addition to the random multiplicative process, may exist behind the transformation. More sophisticated agent-based modeling and simulations with plausible assumptions will be useful to discern the generative process.


بدون دیدگاه