منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی مشکل تشخیص الگوهای سیگنال الکتروانسفالوگرافی در سیستم های فعالیت بدنی - IEEE 2018

عنوان فارسی
مشکل تشخیص الگوهای سیگنال الکتروانسفالوگرافی در سیستم های فعالیت بدنی
عنوان انگلیسی
Problem of recognition of patterns of signals of an electroencephalography in systems of physical activity Sign In or Purchase
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
14
سال انتشار
2018
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
کد محصول
E8526
رشته های مرتبط با این مقاله
مهندسی پزشکی، فناوری اطلاعات
گرایش های مرتبط با این مقاله
بیوالکتریک، شبکه های کامپیوتری
مجله
کنفرانس پژوهشگران جوان روسی در مهندسی برق و الکترونیک -Conference of Russian Young Researchers in Electrical and Electronic Engineering
دانشگاه
Faculty of Control Systems and Robotics - Department of Control Systems and Informatics - ITMO University - Russia
کلمات کلیدی
الکتروانسفالوگرافی؛ شبکه های عصبی هیبرید؛ پروتز بیونیک؛ سیستم کنترل اتوماتیک
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


An important stage in the development of biomechanical systems is the interpretation of pulses obtained by EEG and EMG methods. The main difficulties are in the classification of signals and the determination of patterns of nerve impulses that actuate the limbs of the human body. If these problems are successfully solved, the classified patterns can be used to control biomechanical systems, for example, such as bionic prostheses. Modern methods of artificial neural networks open up the prospect for realizing an effective classification of the received impulses. However, the effectiveness depends on the chosen model of the artificial neuron and its computational complexity. This article will consider the most popular hybrid neural networks, and it will be shown that they have such advantages as resource intensity, energy efficiency and high level of accuracy of calculations and at the same time are biorealistically enough.

نتیجه گیری

VII. CONCLUSIONS


EEG analysis is a difficult task, since the nature of the rhythmic activity of the EEG is specific for each individual, the classifier of vectors of characteristic EEG characteristics must adaptively adapt to the subject. The use of neural networks is advisable since they can provide a high level of accuracy of calculations and at the same time are sufficiently bio-realistic.


بدون دیدگاه