Abstract
To evaluate the hysteretic behavior of the low-yield-strength steel shear panel damper (LYSPD) accurately is very important for the dynamic analysis of the structure. Various analytical models for hysteretic behavior of the LYSPD are based on the static experiment results nowadays while it may be affected by dynamic loading speed, loading history and increased temperature. This paper presents a series of static and dynamic experimental investigations for examining the hysteretic behavior of the LYSPD. Obvious difference is observed between static and dynamic hysteretic curves. The test results suggest that the precise description of the nonlinear behavior of the LYSPD under static loading makes no sense. The nonlinear behavior of the LYSPD is replaced by linear strain hardening caused by dynamic loading speed and the perfect elastic–plastic model is more suitable for describing the hysteretic behavior of the LYSPD under dynamic random wave.
1. Introduction
Passive energy absorption damper is widely adopted in current seismic resistant design of structures [1–3]. In the design approaches, damper that is installed in the building or the bridge serves as a fixing apparatus under small earthquake while it plays an important role to dissipate energy during large earthquakes. The effective damper force is set lower than the structural yield force to prevent the failure of structure and it could be adjusted by the cross section or the number of the damper. The earthquake energy is mainly dissipated by the damper which works just like “fuse” and failures while the structure remains intact during the earthquake.
5. Conclusion
Serials of static and dynamic tests are conducted to investigate the hysteretic behavior of the developed LYSPD. Obvious difference between static tests and dynamic tests is observed and our major findings are summarized as follows:
(1) The failure mode of the developed LYSPD under static constant tests is out-of-plane shear buckling while it is in-plane shear under dynamic constant and dynamic random wave tests. (2) The maximum shear force of the LYSPD can be calculated by maximum shear stress and the cross section area approximately on the basis of homogeneity deformation supposition.