دانلود رایگان مقاله مبارزه با پولشویی با تکنولوژی: انگلستان

عنوان فارسی
مبارزه با پولشویی با تکنولوژی: مطالعه موردی بانک X در انگلستان
عنوان انگلیسی
Fighting money laundering with technology: A case study of Bank X in the UK
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
12
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E5611
رشته های مرتبط با این مقاله
اقتصاد
گرایش های مرتبط با این مقاله
اقتصاد پولی، اقتصاد مالی
مجله
سیستم های پشتیبانی تصمیم - Decision Support Systems
دانشگاه
Centre for Systems Studies - Hull University Business School - UK
کلمات کلیدی
پولشویی، نظریه سیستم، سیستم های مانیتورینگ تراکنش، پروفایل
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

abstract


Article history: Received 4 December 2016 Received in revised form 29 October 2017 Accepted 21 November 2017 Available online 2 December 2017 This paper presents a longitudinal interpretive case study of a UK bank's efforts to combat Money Laundering (ML) by expanding the scope of its profiling of ML behaviour. The concept of structural coupling, taken from systems theory, is used to reflect on the bank's approach to theorize about the nature of ML-profiling. The paper offers a practical contribution by laying a path towards the improvement of money laundering detection in an organizational context while a set of evaluation measures is extracted from the case study. Generalizing from the case of the bank, the paper presents a systems-oriented conceptual framework for ML monitoring.

نتیجه گیری

5. Discussion


5.1. Implications for practice & contributions


Abstracting from the case, we can look to implications for institutions that try to improve in their handling of AML. One important aspect is that the (AML) system, in its efforts to reduce the complexity of the environment, is forced to succumb to a default two-step reduction of environmental complexity. The first step involves complexity reduction via technology: data from the environment are internalized by the system, which trigger algorithms based on what phenomenon is being modeled. The second step is a follow-up complexity-reduction by human activity systems. As shown in Table 1, the (AML) system develops three types of structural couplings for TPR improvements: i) internal (between itself as a subsystem of the bank and other departments like marketing), ii) selfreferential (with AML recursive explorations like that in phase 3 – step 1), iii) classic/external types of structural couplings with the environment of the bank. These should not be thought of as distinct but as intertwined, affecting ML modeling efforts in complex ways. They are depicted in the conceptual model as [A], [B], and [C].


بدون دیدگاه